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ABSTRACT

Home ranges for five radio-tagged snow leopards (Uncia uncia) inhabiting prime habitat in 

the Nepal Himalaya varied in size from 11-37 km2.  These solitary felids were crepuscular 

in activity, and although highly mobile, nearly 90% percent of all consecutive day 

movements involved a straight-line distance of 2 km or less.  No seasonal difference in 

daily movement or home range boundary was detected.  While home ranges overlapped

substantially, use of common core spaces was temporally separated, with tagged animals 

being located 1.9 km or more apart during the same day.  Spatial analysis indicated that 47-

55% of use occurred within only 6-15% of the total home area.  These snow leopards 

shared a common core-use area, which was located at a major stream confluence in an area

where topography, habitat and prey abundance appeared to be more favorable.  A young 

female used her core area least, a female with two cubs to the greatest extent.  The core 

area was marked significantly more with scrapes, faeces and other sign than non-core sites,

suggesting that social marking plays an important role in spacing individuals.

Snow leopards showed a strong preference for bedding in steep, rocky or broken terrain, on 

or close to a natural vegetation or landform edge.  Linear landform features, such as a cliff 

or major ridgeline, were preferred for travelling and day-time resting.  This behaviour 

would tend to place a snow leopard close to its preferred prey, blue sheep (Pseudois 

nayaur), which use the same habitat at night.  Marking was concentrated along commonly

travelled routes, particularly river bluffs, cliff ledges and well defined ridgelines bordering

stream confluences -- features that were most abundant within the core area.  Such marking 

may facilitate mutual avoidance, help maintain the species' solitary social structure, and also

enable a relatively high density of snow leopard, especially within high-quality habitat.
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     1 Nomenclature according to Wozencraft 1993, based upon recent genetic and systematic research. 
European investigators have long argued that snow leopards merit a separate genus based on
morphological and behavioural differences from other members of the genus Panthera.
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PART 1  -  INTRODUCTION AND METHODS

CHAPTER 1 INTRODUCTION

1.1 Introduction

The snow leopard (Uncia uncia, formerly Panthera uncia1) inhabits the high, remote 

mountains of Central Asia, and has been listed in the Red Data Book as an endangered 

species throughout its range since 1972 (Goodwin and Holloway 1972).  The snow leopard

meets criteria for endangered status under newly proposed criteria (IUCN 1994).  It is 

widely, but sparsely distributed through the mountain ranges of Tibet and adjoining parts of

China, the Himalaya of Nepal, India, Bhutan and Sikkim, the Karakorum Mountains along 

the Indo-Pakistan border, the Hindu Kush Range of Pakistan and Afghanistan, the Pamirs 

along the Tajikistan - Afghanistan border, the Tien Shan of Kyrgyzstan, Kazakhstan and 

China, and the Altai Range of Mongolia and Russia, among other mountain complexes

(Schaller 1977).

Snow leopards are closely associated with arid and semi-arid shrubland, grassland or barren

habitats.  In the Sayan Mountains of Russia and parts of the Tien Shan Range, they inhabit 

open coniferous forest, although generally avoiding dense forest cover (Heptner and 

Sludskii 1992).  The snow leopard is primarily an inhabitant of the alpine and subalpine 

zone, from elevations of 900 m to 5,500 m or more, but usually between 3,000 and 4,500 

m (except in the northern range limits where snow leopards occur between 900 and 2,500 

m) (Heptner and Sludskii 1992; Schaller et al. 1994).  In Pakistan, Russia and parts of India

they are reported to migrate to lower elevations during winter, following prey (Roberts 

1977; Dang 1967).

Despite a vast geographic range of about 2.3 million square kilometers (Fox 1994), it is 

among the least known of the world's large cats.  Until recently, virtually all knowledge
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concerning snow leopard in the wild accrued from anecdotal observations, often made by 

big game hunters roaming remote areas in search of wild sheep and goat trophies (Hemmer

1972; Guggisberg 1975; Roberts 1977; Schaller 1977).  For example, Schaller summarized

what little natural history information was available on this solitary felid in his book, 

Mountain Monarchs.  After intensively searching different parts of the Himalaya for 

pugmarks and other sign, Schaller (1977:155) surmised that snow leopard must travel far in

search of food and that "the size of its home range is unknown, but judging by the long 

intervals between an animal's visits to certain valleys it must be quite large".  While 

pugmarks indicated that snow leopards travelled alone most of the time, no data existed to

determine whether they conformed with the basic pattern of solitary felid social organization 

-- namely one in which males occupy larger, exclusive ranges which encompass several 

female ranges (Sunquist and Sunquist 1989).  Little or no information was available on 

habitat preferences, although Schaller noted that snow leopards tended to travel along the 

base of cliffs leaving abundant sign in the form of scrapes and feces.  More data have 

become available on the snow leopard's diet from different areas, but the accompanying

information precludes an examination of basic predator-prey and habitat relationships.  See 

Fox (1989) for a more recent summary of snow leopard status and ecology, but this 

literature review predated the few telemetry studies that have been undertaken to date (see

below).  Jackson (1979a) reported on the status and conservation of snow leopards in 

Nepal. 

The paucity of behavioral and ecological information can be largely attributed to the 

species' secretive habits, its low density, sparse distribution and the hostile or inaccessible

habitat in which it is found.  Investigators who relied upon incidental sightings or sign as a

source of data found themselves returning with little substantive information to show for the

significant effort they had expended simply to visit remote field sites.  As a secretive, shy 

and extremely well-camouflaged carnivore, the snow leopard is clearly an ideal candidate 

for the use of radio-telemetry as an investigative tool.  The first attempt in 1972 at intensive

study was undertaken in Pakistan, but failed because the study population was essentially

decimated while researchers attempted to live-trap animals for instrumentation (Schaller 

pers. comm.).  Similar obstacles have discouraged detailed investigations of the sympatric 

prey species of the snow leopard, such as bharal or blue sheep (Pseudois nayaur), 

Himalayan tahr (Hemitragus jemlahicus) and Asiatic ibex (Capra ibex sibirica).
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This study is the first successful, in-depth attempt at investigating snow leopard ecology 

using radio-telemetry.  Given their almost legendary secretiveness and camouflage, radio-

telemetry offers the only realistic option for gathering information on snow leopard 

movements, home range, patterns of habitat utilization, social organization and activity, 

among other topics.  In late 1981 His Majesty's Government of Nepal (HMG) approved my

application to study snow leopards in the Langu Valley of western Nepal under a joint

agreement between the California Institute for Environmental Studies and the Department of

National Parks and Wildlife Conservation (DNPWC).  Field work was undertaken between

January 1982 and June 1985, generating detailed information on snow leopard ecology,

including home range, movements, activity,  marking behavior, and habitat preferences 

(Jackson and Ahlborn 1988a, 1988b, 1989; Ahlborn and Jackson 1988).  

More recently, snow leopards have been radio-tagged in other parts of Nepal (Oli 1994), 

India (Chundawat 1989, 1990, 1992), and Mongolia (Schaller et al. 1994), but resulting

information has been severely limited by a small sample size (1-3 individuals) or short 

periods of monitoring (all less than 3 months).  Our understanding of distribution, habitat 

use, food habits and marking behaviour has grown, as evidenced by the interest shown in 

the five international symposia held to date and centered around snow leopard.  Driven by

concern for its future, researchers have tended to focus upon determining snow leopard 

status and distribution, identifying conservation actions, and addressing issues related to the

depredation of livestock (for example, Buzurukov and Muratov 1994; Fox and Chundawat

1988; Fox 1994; Jackson et al. 1994a; Koshkarev 1984; Mallon 1984a & b; Oli, 1994; 

Schaller et al. 1987, 1988a and b, 1994).  However, conservation will only be effective if

protection programs and specific initiatives are based upon a thorough understanding of how

snow leopards utilize, share and compete for available habitat and other resources.  Ideally, 

such research should be followed by range-wide surveys to identify habitat distribution,

availability and quality at the landscape level (Maehr and Cox 1995; Villarrubia and 

Jackson 1994).

1.2 Study Objectives

The Langu Valley study area supports good populations of snow leopard and two of its key 

prey species, blue sheep and Himalayan tahr.  It offered an excellent opportunity to 

examine snow leopard ecology in high or very high quality habitat, without interference 
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from livestock grazing and with minimal human disturbance.  Overall study objectives were 

to examine, to the extent possible in 3.5 years, snow leopard activity and movement 

patterns, home range size and configuration, habitat utilization and predator-prey 

relationships (food habits and basic ungulate prey population dynamics).  I sought to gather 

as much data on a diverse topics as time and resources permitted.  Although I attempted to

gather data both incidentally and systematically, using direct and indirect methods of study,

difficult logistics, the exceedingly remote study site and its rugged terrain greatly hampered

efforts at intensively radio-tracking snow leopards.  This dissertation focusses on the 

following specific questions:

(1) How closely does the snow leopard's home-range pattern and social system 

resemble that shown in other large solitary cats, such as puma (also known the 

cougar or mountain lion) (Felis concolor, considered Puma concolor by Wozencraft

1993), common or forest leopard (Panthera pardus), jaguar (P. onca), or the tiger

(Panthera tigris)?

(2) What are its daily movement and activity patterns, and how do snow leopards space

themselves both temporally and spatially within an area of prime habitat?

(3) What habitat preferences are shown by snow leopard, and how is home range size,

configuration and spatial utilization influenced by such preferences? 

(4) What lessons can this study offer for conserving snow leopards, their prey and the

associated high-altitude ecosystem, in order for the snow leopard to be justifiably

removed from the endangered species list?

Unless otherwise specifically noted, I was responsible for designing, directing and 

undertaking all work presented in this dissertation.  From June, 1983 until the end of the 

study, Gary. G. Ahlborn, a trained wildlife biologist joined me to assist in radio-tracking,

habitat mapping and characterization, along with one or two Nepalese field assistants.  Mr.

Ahlborn was primarily responsible for designing and conducting the study of marking 

behavior in the snow leopard, findings of which are reported in Ahlborn and Jackson 

(1988).  Mr. Karan B. Shah, the Nepalese counterpart assigned to the project by the

Government of Nepal, undertook concurrent research on blue sheep and Himalayan tahr, 
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focussing upon their status, distribution, herd dynamics, activity pattern, and habitat use. 

Mr. Shah is submitting his work to Tribhuvan University, Kathmandu (Nepal) as part of his

Ph.D. program there.

Full-time data analysis was curtailed six months after completing the field work in 1985 due 

to lack of funding, but research findings on capture and immobilization techniques, home 

range, movement patterns and marking behavior were reported in a series of published 

papers over the following years (Jackson and Ahlborn 1984, 1988a, 1988b, 1989, 1990;

Jackson et al. 1990).  I prepared and wrote all papers except for the one on marking 

behavior mentioned above.  In March 1994, I applied for readmittance to the doctoral 

program and completed an in-depth analysis of habitat utilization by snow leopards, using 

the data-set gathered earlier and employing the emerging technology of Geographic 

Information System (GIS) software.  This thesis focusses upon that work.



The Study Area in the Langu Gorge of Western Nepal  showing Tillisha Cave (4,300 m)
 -  the highest camp used to track radio-collared snow leopards

 
©  National Geographic Society 
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CHAPTER 2 THE STUDY AREA

2.1 Location and Topography

The study area (Longitude 82°, 33' to 41' E; Latitude 29°, 30' to 35' N) lies along the 

middle portion of the Langu River gorge (Namlang Khola in Nepalese), to the north of the 

main Himalayan Range near the border with Tibet in the far western region of Nepal 

(Figure 1).  It encompasses the Dolphu Village Development Council (VDC) administrative 

unit of Mugu District in the Karnali Zone, Nepal's only major administrative region that is

entirely roadless.  The core study area is located on the western edge of the Dolpo Plateau 

in the Shey-Phoksumdo National Park, which was established in 1985 by His Majesty's

Government partially on the basis of recommendations from my study.  Enclosing a 3,555 

km2 area, it is the largest of Nepal's 8 national parks, and protects Tibetan fauna and flora, 

as well as culture.  The project study area totals some 300 km2, including an 80 km2 core 

zone located immediately north of the Langu Khola, where most field work was undertaken. 

The terrain is among the most rugged and forbidding in the Himalaya (Tyson 1969), and 

the trail along the Langu River into Dolpo can only be negotiated in winter when water-

levels and temperatures are low.  Elevations range from 2,700 m along the Langu River to 

over 6,800 m in the Kanjiroba Himal or mountain range which forms the study area's 

southern boundary.  The Langu River, which drains nearly all of the Dolpo Plateau, runs 

almost east - west, joining the Mugu Karnali River about 25 miles downstream of the study 

site.  The river has eroded a deep gorge, bounded by cliffs and steep, rocky slopes in 

excess of 35 degrees.  Tributary streams like Dhukyel and Tillisha are also deeply incised 

and are bordered by banded rock buttresses which are virtually impenetrable to humans on 

foot.  Prolonged water erosion has created a series of large, somewhat isolated mountain 

massifs.

Due to high solar radiation and evaporation, very little of the study area has permanent 

snow or ice cover, and only land over 5,400 m in elevation supports remnant ice-fields and

glaciers.  Thus, the only glacier of any consequence in the core study area is that associated 
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with the north-eastern buttress of Mt Chynnath (5,918 m); by contrast most peaks to the 

south of the Langu River, along the Kanjiroba and Sisne Himal, support permanent glaciers,

although these appear to be receding.  Incised river and stream erosion has resulted in 

drainages with well-defined V-shaped valley profiles, with only one U-shaped valley 

remaining within the core area.  Past deposition of river silt, sand and gravel have created 

small, discontinuous alluvial terraces near most stream confluences with the Langu river, 

although many of these are now 100 - 150 m above the present river-bed, indicative of 

rapid down-cutting.  Such terraces are extensively used by snow leopard for social marking. 

Landforms in the study area fall into four distinct types in terms of land-surface ruggedness 

(Figure 2), with each type exhibiting different geomorphic or topographic features: (1) 

Broken Terrain consists of areas slightly to moderately broken by rocky outcrops, drainages

(primarily dry gullies) and ridges, occupying 13.1 percent of the immediate study area; (2) 

Very Broken Terrain represents areas which are highly broken in all dimensions (such as 

strongly fractured cliffs and ridges), and comprise 12 percent of the area; (3) Smooth 

Terrain is dominated by relatively evenly-surfaced slopes and gently rolling terrain with few 

rock outcrops (totalling 40.3 percent of the area); and (4) Cliffs, defined as land with slopes 

in excess of 50°, comprise 34.6 percent of the study area.  See Section 3.6 for additional

information on the terrain types.

2.2 Geology and Soils

Very little is known about the area's geology, and to my knowledge the only reports 

available are those which address western Nepal's geology at a gross regional scale.  Most 

rock strata have been heavily-folded and consist primarily of gneiss, belonging to Tibetan

Tethys sediments of Jurassic to Proterozoic ages, with intrusive Tertiary tourmaline granites

(Karmacharya 1989; Ohta and Akiba 1973).  The light-grey gneiss of the Ghilang 

Formation are medium to fine grained in texture, containing black tourmaline, although augens

may or may not be present. Bands of gneiss and schist alternate, interspersed with a 

few layers of highly micaceous quartzite containing a few pink and light brown garnets.  

Other rock formations include limestone along the southern flanks of the Langu River, 

while granitic outcrops dominate the peaks to the north.  Granite probably belongs to the Mugu

Formation, a Tertiary leucocratic granite rich in quartz and feldspar that has been 
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FIGURE 1: Landform Types of the Study Area
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intruded into Precambrian crystalline schists, but remains relatively unweathered.  Deposits 

of copper-bearing ore are found in the Sangduk Khola, south of Dolphu village.  Heavy

faulting, folding and jointing occurs throughout the area, with a dominant NNE strike and a dip

averaging 50-60° (Karmacharya, 1989). 

Soil texture and structure varies widely, although most soils are shallow and poorly 

developed, with substantial expanse of exposed bedrock.  Since there is no cultivation or

settlement in the core study area, all soils are subject only to natural weathering.

2.3 Climate

The study area is situated in the "Inner Valley" semi-arid vegetation zone described by Stainton

(1972) and Schweinfurth (1957).  This climatic regime results from the 

rain-shadow effect due to the nearby Kanjiroba Himal which captures most of the moisture, 

as well as orographically-induced diurnal wind circulation in the Mugu-Karnali river system

(Bishop 1990).  Other factors contributing to the semiarid conditions include low winter

temperatures, high evaporation, and a swift spring snow-melt and runoff.  Climate of the 

study area is best characterized as being temperate, with relatively little snowfall, most of

which occurs from late December into early March.  Total annual precipitation is estimated 

at 500-1,000 mm, with more than half occurring as rain during the monsoon period (July -

September).  Data from Mugu, the nearest weather station to the study area (located about 

18 km to the northwest), indicate that 71 percent of the precipitation occurs during the 

summer monsoon (Bishop 1990:37).  Annual precipitation is extremely variable, ranging 

from less than 500 mm to about 1,500 mm during exceptionally wet years (Dobremez 1976: 75,

Figure 64).  

Weather data gathered during this study at Eding Base Camp (located on the Langu River at an

elevation of 2,950 m) are summarized in Table 1.  The coldest and driest months are January

and November/December, while the warmest and wettest months are May and July-August,

respectively.  Average daily temperatures over the three-year period 1982 - 1985 at Base Camp

were 1° Celsius in January and 17.5° in June.  Diurnal temperature ranges of 

more than 25° are not uncommon, especially in late winter and spring; the hottest period is

generally late May through mid-June, immediately before the cooling influence of the 

monsoon.  Snowfall rarely remained on the ground for more than a few days on 
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Table 1: Temperature and precipitation measurements taken at Base Camp (1982 - 1985)

Daily Temperature (degrees Celsius)1 Precipitation2

Minimum Maximum
Month N3 Avg  Range Avg Range Snow Rain

January 87 -5.0 -14.0 to 0.0 7.1 -6.0 to 20.0 1.49 0.00

February 78 -4.8 -13.0 to 5.0 9.8 0.0 to 20.0 0.79 0.00

March 84 -0.1 -15.0 to 8.0 15.2 0.0 to 25.0 1.51 0.02

April 97 3.4 -5.0 to 17.0 17.2 -0.5 to 25.0 0.21 0.10

May 104 7.4 -1.0 to 15.5 21.3 12.0 to 31.5 0.00 0.12

June 88 11.4 5.0 to 19.0 23.7 16.0 to 31.0 0.00 0.17

July 28 14.0 12.0 to 16.0 24.9 19.0 to 29.0 0.00 0.14

August 31 13.9 8.0 to 18.0 24.0 17.0 to 29.0 0.00 0.26

September 13 11.0 8.0 to 14.0 20.3 13.0 to 25.0 0.00 0.33

October No data

November 17 -0.2 -6.0 to 4.0 11.2 6.0 to 17.0 0.01 0.00

December 78 -2.7 -11.5 to 4.0 10.4 0.5 to 18.5 0.27 0.00

Notes:

1 Temperature = degrees (Celsius), as measured in the shade at Eding Base Camp (2,875 m)
2 Precipitation = mean daily precipitation (centimeters)
3 N = number of days sampled

south-facing slopes, in contrast to northerly slopes which retain their winter snow cover for 

up to several months.  Periods of greatest soil-water deficiency are the months of May and 

June, prior to the monsoon, and then again from October into December preceding winter

snowfall.

The monsoon usually reaches the study area in late June or early July, and lasts until the 

end of September.  July and August tend to be the wettest months, but precipitation varies

widely from year to year.  During these periods rainfall generally occurs on a near daily 
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basis under cloudy skies. Compared to the southern slopes just a few miles away, there is

significantly less rainfall, less mist and better visibility, with higher incidence of sunshine.  

For the purposes of this study, the seasons were defined as winter (December to mid-

March); spring (mid-March to May); summer (June to September); and fall/autumn 

(October to November).

2.4 Vegetation

Three brief floral surveys have been undertaken in or near the study area (Grey-Wilson 

1974; Shrestha 1982; and Williams 1953).  Collections made during the course of this study are

housed with Dr. H. Tabata at the Laboratory for Plant Ecology, Kyoto University, 

Kyoto, Japan.  Polunin and Stainton (1984) was used to identify flowering plants collected

while in the field, with final identifications accruing from taxonomic examination of specimens 

provided to Dr. Tabata.  The vegetation types described here are adapted from Dobremez

(1976), Stainton (1972), Shrestha (1982) and Schweinfurth (1957).  

A review of the literature indicates vegetation of the study area contains elements typical of

those forest and shrub types found in comparable parts of the Jumla-Humla region, as well 

as the neighboring but noticeably drier Dolpo region (Stainton 1972).  The Langu Valley

encompasses the Upper Temperate and Alpine Zones delineated by Dobremez (1976).  West

Himalayan floral elements are well represented, indicating a closer affinity with flora from

Kashmir or the Gharwal region of India than with the eastern Himalayan elements 

dominating the flora of Sikkim or Bhutan (Dobremez 1976; Stainton 1972).  However, its

geographic location north of the main Himalayan Range (and subsequent protection from the

full effect of the monsoon) ensures the presence of plant species more commonly associated

with Tibet's xeric flora (Chang 1981). 

Based primarily upon temperature and rainfall regimes, Dobremez and Shrestha (1980)

developed a 1:250,000 scale map of potential vegetation types for the Jumla - Saipal region,

including the Langu Valley study area.  However, this model failed to fully incorporate the

pervasive effect aspect has on community structure and composition.  Thus, it failed to 

predict the occurrence of coniferous forest along the south side (but north-facing) slopes of 

the Langu River, although it more accurately depicted the north bank vegetation as a 

Caragana, Lonicera and Artemisia dominated steppe.
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Seven vegetation types were recognized (Figure 3).  The steppe shrub community which

dominates the northern side of the Langu Gorge between elevations of 2,800 m and about 3,900

m is comparable to Dobremez's(1976) Tree and Shrub Steppe types and Stainton's (1972) Dry

Alpine Scrub category.  Dominant shrubs include black juniper (Juniperus indicus), Caragana

gerardiana, Lonicera spp., Abelia triflora, Rabdosia pharica, Cotoneaster spp., and sagebush

(Artemisia spp.).  Rosa - Berberis - Ribes - Jasminium 

occupy rocky sites, while Prunus mira occurs in gully bottoms and some talus slopes.  This

community was subdivided into two vegetation types, Mixed Shrubland and Subalpine

Shrubland as noted below.

Barren areas (less than 10 percent ground cover) occupy about 53 percent of the north 

Langu slopes, with alpine grassland covering about 16 percent, and shrubland the remaining 26

percent.  Small isolated stands of blue pine (Pinus wallichiana) occur in most large tributaries,

with birch (Betula utilis) on some higher, moist north-facing ledges and slopes.  Alpine

grassland (dominated by the sedge Kobresia) occurs on the more evenly sloping and less rocky

mountain slopes above about 3,900 m, as well as narrow glacial bowls and high 

cliff ledges.  The upper limit of grassland is about 4,800 m.  A few hardy succulents grow 

on screes as high as 5,200 m. 

In contrast to the semi-arid conditions found north of the Langu River, the cooler, moister

north-facing slopes to the south support expansive, rather open blue pine forests, 

interspersed with a few Himalayan silver fir (Abies spectabilis) and West Himalayan spruce

(Picea smithiana).  Above the discontinuous forest belt, at about 3,500 m there is a dense zone

of birch forest and shrubland.  Much of the forest has been destroyed by fire, so that dense

successional stands of Cotoneaster, Caragana and rose shrubland occur.  Sage dominates in

lower, more open areas.

These communities are described in more detail below, ordered according to the two major

elevational and climatic zones present:

TEMPERATE AND SUBALPINE ZONE (< 3,300 - 4,200 m)

Riparian Woodland:  This community occurs below 3,000 m along permanent water-courses

like the Langu River, and Tillisha or Dhukyell streams.  It consists of narrow and highly
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FIGURE 3: Vegetation Cover Types of the Study Area



15

discontinuous stands of Himalayan poplar (Populus ciliata), willow (Salix spp) and Abelia

triflora, Sambucus or jasmine (Jasminium humile), interspersed with other vegetation types. 

Stainton (1972) recognized poplar woodlands as a distinctive forest type, although it is 

usually a component of Aesculus - Juglans - Acer forests which are found along major river

courses in western Nepal between 2,300 - 3,200 m elevations.  Dobremez (1976) described this

as a subtype of silver fir forests.  Riparian woodland is poorly developed in the study 

area, probably as a result of poor soil, aridity, unstable slopes and erosive flooding.  

Shaded sites with deep soils along the Langu River supported Desmodium elegans and Butea

minor, two tree species which are common below elevations of 2,900 m.  Buckthorn

(Hippophae spp) and Myricaria scrub, characteristic of streambeds in Dolpo and Tibet, are

absent from the study area.

Mixed Shrubland:  This widespread vegetation type is found between elevations of 2,700 -

3,800 m, occupying about 11 percent of the core study area.  It is a diverse shrub 

community containing up to 6 common shrubs, including black juniper (Juniperus indica), a

tree or shrub that is especially abundant on south-facing slopes.  The understory usually

contains many herbs, grasses or forbs.  Shrubs stand between 0.3 - 1.5 m in height and 

usually 1 - 3 species dominate a particular site.  Ground cover is extremely variable 

depending upon slope steepness, moisture, aspect and soil development, but averages 24

percent.  Individual woody plants are widely spaced, although this pattern varies widely, 

with the greatest cover and densest spacing in sites supporting deep soils.  Shrub 

composition varies between 15 and 100 percent, averaging 76 percent.

The most widespread shrub species are caragana (Caragana gerardiana), Lonicera spp., Spirea

arcuata, shrubby cinquefoil (Potentilla fructicosa), Rhododendron lepidotum, Berberis spp.

and Cotoneaster spp.  On the drier more southwesterly slopes Rabdosia 

pharica, wild peach (Prunus mira), and Ephredra gerardiana are also present and tend 

toward dominance, while the more mesic north-facing slopes are dominated by Abelia 

triflora, Lonicera hypoleuca and Viburnum spp.  Dry north-facing sites support Artemisia 

spp. with shrubby cinquefoil, wild asparagus (Asparagus filicinus) and Allium, a strong-

smelling chive.  Rocky sites tend to be dominated by stands of Rosa, Berberis, Ribes

Incarvillea arguta, I. mairei and jasmine. Wild peach is especially well represented in rocky

gullies.

The mixed shrub type appears to be similar to Stainton's Dry Alpine Scrub, but since 
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species typical of the dry Dolpo-Mustang area are absent, I have not used his nomenclature. 

Examples of species that are absent include Hippophae, Sophora morecroftiana and

Ceratostigma ulicinum.  In other respects, species composition is very similar.  Mixed 

shrub is comparable to Dobremez's Steppe Caragana subtype.  Stainton (1972) recognized a

forest type dominated by black juniper from Nepal's "Inner Valleys" or areas sequestered 

from the full-effect of the monsoon like the Langu Valley.  However, this juniper rarely 

forms dense stands that could qualify as "forest", perhaps because of soil conditions or past

burning by people hunting in the area.  In the Langu, J. indicus tends to grow as a low tree 

or shrub less than 3 m tall.

Subalpine Shrubland:  Found between elevations of 3,700 and about 4,300 m, this 

vegetation type is best described as a low dwarf-shrub community dominated by Caragana

versicolor, Potentilla fructicosa or P. cuneata with isolated pure stands of prostrate juniper 

(J. squamata). Numerous herbaceous plants are also present including Thermopsis barbata,

Arnebia benthami, Euphorbia wallichii, Stellaria chamaejasme, Morina polyphylla, and

Astragulus spp.  At lower elevations, dense stands of Caragana nepalensis and Spirea 

arcuata are evident where this cover type gradually intergrades into mixed shrubland. 

Therefore, the ecotone between subalpine and mixed shrubland is poorly defined, and 

boundary mapping is somewhat subjective.  

Subalpine shrubland is best developed on the rolling hillslopes of Tillisha Mountain and 

those slopes within the eastern section of the study area.  However, it also occurs in steep,

highly broken terrain, covering about 16 percent of the study area.  Shrub composition 

ranges from 45 to 100 percent, averaging 35.  Few shrubs grow higher than 0.75 m, and 

canopy coverage averages 26 percent.

Coniferous Forest:  Study area forests are dominated by Himalayan blue pine (Pinus

wallichiana) with Himalayan silver fir (Abies spectabilis) and some West Himalayan spruce

(Picea smithiana).  This vegetation type is equivalent to the Temperate Blue Pine Forest 

types of Dobremez (1976) and Stainton (1972).

There is a well developed shrub understory beneath the 10 - 15 m high canopy.  Generally, 

the study area is too sheltered, dry or high for oak forests, although isolated stands of

Quercus semecarpifolia occur in a few sunny sites.  Associated species are black juniper, 
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birch, and Rhododendron arboreum.  Understory shrubs are represented by R. lepidotum,

Lonicera spp., Rosa macrophylla, R. sericea, Caragana nepalensis, Ribes glaciale, 

Virburnum spp, jasmine, and Cotoneaster spp.  Herbaceous plants include various species of

Anenome, Gaultheria, Trillium, Fragaria, Anaphalis, Tanacetum, Saussurea, Senecio, 

Aster, Polygonum and Nepeta, as well as geraniums (Geranium spp.), violets 

(Viola spp.) and Stellaria chamaejasme, characteristic of sandy soils.  Due to differences in 

soil type, exposure and human modification (primarily burning), the coniferous forests tend 

to be well interspersed with successional shrub types, dominated by species like sage, wild

peach, Potentilla fructicosa, Lonicera hypoleuca, Cotoneaster, and black juniper. 

Birch Forest:  Small patches of birch (Betula utilis) forest occur along the upper parts of the

subalpine zone.  South of the Langu River this vegetation type forms a more or less 

continuous band above the blue pine forest belt, but below alpine grassland (i.e., between

elevations of 3,500 and 4,100 m).  Birch forest also tends to dominate sites prone to 

avalanches and related disturbances (Oliver and Larson 1990).  North of the Langu, birch 

forest occurs only as very small, fragmented patches found on the most protected ledges or

slopes with a distinct northern aspect.  This distribution pattern within the core area reflects 

the species' ability to tolerate winter snow accumulation, its preference for mesic soils, and 

the short growing season.  The understory supports several species of rhododendron and

honeysuckle (Lonicera), Sorbus spp., as well as rose and several herbs.  Pine, fir and 

spruce are also present. 

ALPINE ZONE (above 4,200 - 5,000 m):

Alpine Grassland:  This vegetation type occurs between elevations of 3,900 m and over 

4,700 m.  While the dominant plants are sedges (Kobresia nepalensis and K. pygmae), these

were interspersed with grasses like Calamagrostis, Stipa, Poa and Danthonia, as well as 

herbs and forbs which are especially prolific in sites with well-developed soils or areas 

heavily grazed by wild ungulates.  Common species include Saxifraga, Lagotis, Chesneya

nubigena, Primula, Aconitum, Saussurea, Gentiana, Anenome, Bistorta, and Euphorbia

wallichii.  Drier, rocky sites tend to support Astragulus candolleanus, Aster, Arenaria,

Dicranostigma lactucoides and isolated patches of prostrate juniper. 

The ecotonal division between alpine grassland and subalpine shrubland is poorly defined in

most places, but the coverage of shrubs is always low in the grassland type.  Typically, the
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terrain is rolling, with a smooth surface and moderate or gentle slope steepness.  Alpine

grassland occupies about 16 percent of the inner study area.  Grasses and forbs comprise 

about 85 percent of the species present by life-form, with the remainder being low-growing

shrubs.  Ground cover averages 42 percent.  No grasses were found above about 4,800 m. 

Pincushion plants increase in abundance and dominance with increased elevation, but their

coverage is typically less than 1 - 5 percent.  Such sites are characterized by rock, scree 

and talus (fell-fields), a very short growing season and deep snows which remain until late 

June in protected places.  They were mapped as the barren cover type.

Barren:  This vegetation cover type may occur at any elevation; it is defined as having less 

than 10 percent plant canopy coverage and being dominated by exposed bedrock or talus.  It 

is most commonly associated with glacial moraine, cliffs, landslides, rockfalls, river 

gravels, river bluffs and other sites bare of plant growth.  More than 53 percent of the area 

north of the Langu River consists of this type.  As mentioned earlier, barren sites include 

areas supporting a sparse cover of alpine pincushion and rock plants, such as Arenaria

bryophylla, Androsace, Saxifraga, Saussurea and Crassulaceace spp.

2.5 Fauna

Faunal composition reflects the area's intermediate geographic position between the 

Palaearctic region to the north (Tibet) and the Indo-Himalayan elements which penetrate 

from the south (Corbett 1978; Schaller 1977).  Little is known about geographic or habitat

distribution and the status of Nepal's rich bird fauna, especially in remote or poorly 

sampled areas like the Langu valley (Inskipp and Inskipp 1985).  Avifaunal species diversity

was not high, as evidenced by the low number of bird species (N = 63) recorded during 

the study.  However, most observations were made in barren, shrubland and other species-

poor habitat, with little time being spent in conifer or birch forest, or in successional forest 

types where species diversity is known to be higher.  Similarly, sampling is biased against

breeding birds, with relatively little field work being undertaken during the monsoon 

period.

There are no detailed investigations of the mammalian fauna of Nepal.  The only ungulates

within the core area are blue sheep (Pseudois nayaur), Himalayan tahr (Hemitragus 
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jelamhicus) and musk deer (Moschus chrysogaster).  Goral (Nemorhaedus goral) and serow

(Capricornis sumatraensis) occur downstream of Dolphu, as do wild pig (Sus scrofa). 

According to Karan B. Shah (pers. comm.), local people report that a few Himalayan black

bears (Ursus thibetanus) occasionally penetrate the gorge as far upstream as Eding; 

however, I found no sign during the time I spent in the area, and cannot corroborate this

observation.  It may have been possible for the occasional bear to visit the study area during 

the summer (a season when little field work was undertaken), without my detecting sign 

later in the fall.  The primary large carnivores are snow leopard and common or forest 

leopard (Panthera pardus).  No evidence was ever found to suggest that forest leopard 

presently occur on the northern side of the Langu Valley beyond Dolphu or the summer

livestock herding gott (camp) at Shimbu, several kilometers upstream.  Therefore, snow 

leopard and common leopard are only sympatric on the southern side of the Langu River 

within the core study area.  The forest leopard is, however, common in forests downstream 

of Dolphu and Wangri, according to reports of villagers.  For these reasons, I concentrated 

my efforts on the north side of the Langu River, in areas supporting only snow leopard.

Smaller mammalian predators include the yellow-throated marten (Martes flavigula), stone

marten (M. foina), the Himalayan least weasel (Mustela nivalis), the red fox (Vulpes 

vulpes), and possibly the jungle cat (Felis chaus) or less likely the leopard cat (F. 

bengalensis).  Small felid tracks were regularly observed south of the Langu Khola, but no

animals were ever seen.  To my knowledge, lynx (Lynx lynx) and Pallas' cat (F. manul) are

absent from the study area or its immediate surroundings.  According to local people, 

Asiatic jackals (Canis aureus) regularly prey upon domestic sheep and goat near the village.  

In December 1976, I observed a lone dhole (Cuon alpinus) above Dolphu, but the 

excessively broken terrain of the study area probably provides marginal habitat for this 

species.  Similarly, the terrain is too rough, steep or heavily dissected to offer suitable 

habitat for wolf (Canis lupus), although they may occasionally visit its fringes.

Other mammals include small insectivores, rodents or hares, including the Royle's or large-

eared pika (Ochotona roylei; synm. O. macrotis), voles (Royle's mountain vole Alticola 

roylei, and possibly the Stoliczka'a mountain vole, A. stoliczka), rat (Rattus rattus), house

mouse (Mus musculus), field mouse (Apodemus sylvaticus), water shrews (Chimarogalle 

spp. or Tibetan water shrew Nectogale elegans), and possibly the black-naped hare (Lepus

nigricollis).  Although no hares were sighted, the remains of one was found.  There are no
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marmots (Marmota himalayana) in the core study site, although they occur in nearby

mountains.

Few reptiles or amphibians inhabit the study area.  The Kashmir agamid (Agama 

tuberculata) was the most commonly seen reptile, along with the Himalayan pit viper

(Ancistrodon himalayanus).  Japura (Japura) lizards occurred at higher elevations, while 

skinks were present in the lower regions.

2.6 Human Activities

The local people are Tibetans or Bhotias, whose existence in the harsh environment depends

upon a complex system of trade and barter to supplement marginal agricultural activities

(Bishop 1990; Clarke 1977; Jest 1975; Von Furer-Haimendorf 1975).  Herds of yak are

maintained by Dolphu residents to provide milk, butter and meat, or serve as transport 

animals for sustaining a remarkably complex trade system linking distant settlements in the

Karnali Zone with temporary encampments along the Tibetan border.  Bishop (1990) 

provides a detailed account of traditional grain-salt trading between the villages of Nepal's

Middle Hill and Tibet, conducted by the Bhotias living along the northern border.  Due to 

the influx of cheaper salt from the India borderlands, the construction of roads and 

alternative transport facilities, an ever-increasing cash-driven economy, and other socio-

economic factors, this trade pattern is rapidly dying out from large parts of western Nepal

(Valle and Summers 1993).  

The villages closest to the study area are Dolphu and the neighboring settlement of Wangri. 

Located at 3,350 m immediately downstream of the study area, Dolphu has some 50 

families for a total population of 210.  There are no permanent human habitations within the

core study area, and furthermore, livestock are unable to penetrate the gorge above Shimbu

(some 4 km upstream of the village) because of precipitous topography and lack of suitable

trails.  Therefore, the only ungulates utilizing pasturages within the study site are blue 

sheep, Himalayan tahr, and musk deer.  Villagers periodically enter the gorge to hunt 

wildlife, collect jimbu (Allium a wild garlic), the kernel of wild peach (used as cooking oil), 

and marang, a highly resinous form of pine wood used for lighting the interiors of homes 

or as torches to move about the village after dark.  Otherwise, all fodder, fuelwood and 
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timber for house construction are obtained from pastures and forests situated close to the

village.

In past years, hunting of snow leopard and musk deer has been pervasive (Jackson 1979b), 

but such activity was largely curtailed during my study, because the villagers feared we 

would report them to the police.  Previously, Dolphu and Wangri residents mined nearby

copper-bearing ores until prohibited from doing so by government decree in the fifties, on 

the grounds that fuelwood smelting damaged the area's forests (Barry Bishop, pers. 

comm.).  In response to the loss of this mineral resource and the imposition of Chinese

restrictions on trading along the Tibetan border, there may have been increased incentive 

for these villagers to undertake commercial hunting of wildlife, despite the fact that, as

Buddhists, they have strong sanctions against killing animals (Bishop 1990; Jackson 1979b). 

Under a system of well-organized communal hunts conducted during winter (when it is too 

cold to practice agriculture), villagers expend considerable effort to hunt musk deer for its

highly prized "musk pod", which are carried only by males.  With musk being literally as

valuable as gold, a single pod could provide a significant portion of a family's annual cash

requirements (Jackson 1979b). 
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CHAPTER 3 STUDY METHODS

3.1 Introduction

Field assistance was provided by Mr. Karan B. Shah, a Nepalese counterpart assigned to 

the project by the Government of Nepal, and by Mr. Gary Ahlborn, an experienced 

biologist.  Mr. Ahlborn was employed by the project from the second year of study when it

became evident that several skilled persons were needed to locate radio-tagged snow 

leopards on a daily basis; also, the study called for simultaneous radio-locating from 

different parts of the study area.  Local Tibetans were hired to carry food and equipment 

and to service the six tracking camps.

Self sufficiency in terms of food (except for potatoes and other staple items) and field

equipment required that all items be purchased abroad or in Kathmandu and then flown by a

chartered STOL aircraft to the nearest airfield, located in Jumla to the south of the study 

area.  It was then portered by human and draft animal (primarily yak) for 10 or more days 

over 60 km of difficult trails to Dolphu village.  Porters carried the supplies the remaining 

19 km to the project's base camp at Eding, a journey that usually required another two days 

of hard travel. 

Field Studies:  Twenty-six months were devoted to research in the core study area during 

the 4-year period 1982 - 1985 (Table 2).  Field work was not undertaken during the 

monsoon or post-monsoon period (July through October), except for the first year of study. 

Another 162 days (5.4 months) were needed to travel between base camp and Kathmandu

(Nepal's capital city), while project administration duties required me to spend over 7 

months in Kathmandu during the course of the study.  The remainder of my time was spent 

in the United States developing grant applications and fund-raising to cover the annual 

project cost of approximately $ 45,000. 

Except for the first visit, 6 to 17 days were usually required to reach my project's base 

camp, depending upon the availability of charter flights and porters.  The initial journey to 

the study area took 31 days, and involved an overland jeep drive (via the East-West 
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Highway) to the Indian border at Nepalganj and onto Chinsu, from which a three-week trek 

was required to reach Dolphu.

3.2 Live-trapping, Capture and Immobilization

Snow leopards were live-trapped using leg-snare traps (Novak 1980) placed along frequently

travelled wildlife trails.  Traps were buried and concealed in the ground and a snare cable 

was attached to a one-meter long metal stake driven into the ground or anchored via cable 

to rock-bolts drilled into large boulders.  Most traps were placed along the edge of a bluff

bordering the Langu River that served as a regularly used travel lane for snow leopards 

visiting the core study area.  Two or more "trap sets", each containing one or two traps, 

were placed within 150 m of each other.  Up to four traps were used at some places, of 

which a few were baited with live goats for short periods.  The most effective trapping 

location consisted of a place where vegetation, boulders and other physical structures

constrained the movement of snow leopard to a natural trail less than 0.5 m wide, and 

where an abundance of fresh snow leopard scrapes and related sign indicated recent 

visitation and ongoing marking activity.  For a detailed description of capture techniques, 

see Jackson et al. (1990). 

Table 2: Schedule of field time spent in the Langu Valley study area (1982 - 1985)

Dates of Field Work Season Number of Days 
in Field

17 January - 14 April 1982 Winter - Spring 88

28 May - 17 September 1982 Summer 109

26 November 1982 - 21 January 1983 Fall - Winter 71

26 March - 1 July 1983 Spring - Summer 98

27 November 1983 - 1 July 1984 Winter - Summer 217

31 November 1984 - 19 June 1985 Winter - Summer 202

                                                                                 Total Number of Days     785
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Only a few sites were baited with live goats; most trap sites were scented with attractants 

like wildcat urine (Stanley Hawbaker, Fort Loudon, Pennsylvania), FAS (a fatty acid scent 

used on carnivore scent-station transects, Roughton and Sweeney 1982), catnip (Valeriana

officinalis), and freeze-dried urine from a captive snow leopard that was in oestrus at the 

time.  A pair of domestic chicken wings were hung from branches within "flag sets" in an

attempt to attract the attention of any leopard passing nearby.

Trapping was undertaken primarily in winter and early spring, between December and late

April.  Traps were checked at least twice daily, at dawn and then again at dusk.  Trap-site

disturbance and human scent was minimized by using spotting scopes or powerful 

binoculars to search each location, although periodic visits were needed to reset accidentally

tripped traps or to feed bait animals.  Most of the snow leopards captured during this study

spent 12 hours or less entrapped, judging by the amount of site disturbance.

All captured snow leopards were immobilized with ketamine hydrochloride (Ketaset, Bristol

Laboratory, Syracuse, New York) administered by intramuscular injection in the rear hip.  

Drug delivery was accomplished using (i) a 1.25 meter long, rigid jabstick with 3.0 or 6.0 

ml syringes and 16 or 18 gauge needles, (ii) by darts projected from a 1 meter x 10 mm

blowpipe (Telinject, Encino, California), or (iii) by a combination (Jackson et al. 1990).  

Darts were propelled by a Vario air-pistol or lung-power.  Each animal was given a dosage 

of approximately 6.6 mg/kg and administered with 3.5 ml of penicillin (Flocillin); gum

lacerations were treated with an anti-bacterial furacin (Nitrofurazone), while a topical biotic

ointment (Panalog) was used to treat skin abrasions and other wounds.

Anaesthetized animals were shaded or swabbed with water to prevent hyperthermia.  Each

animal's head was covered with a cloth to prevent damage to its dilated pupils and to 

minimize stress related to human presence.  Prior to recovery, all leopards were moved 

away from the river bluff and left beneath a shady tree or bush.  The animal's activity was

observed from across the 25 m wide Langu River with a spotting scope. 

Each immobilized animal was weighed, measured, tattooed in the inside of one ear with an

identifying number, and fitted with a radio-collar.  The following measurements were taken: 

tip of nose to base of tail; tail length; front shoulder height; front and hind paw width; 

weight; canine length.  Facial and dorsal spotting patterns were photographed and 
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subsequently sketched for positive identification with or without the attached radio-collar

(Blomqvist and Nystrom 1980).  Animals were sexed and classified according to three

age-classes:  (1) Cubs: <12 months of age; (2) Subadults: > 12 - < 36 months old; and 

(3) Adults: > 36 months old.  Criteria used to establish age-class included size, weight,

estimated birth date, reproductive condition, canine size and wear, general dentition, and

subsequent behaviour as determined by radio-tracking.  Females were examined for 

evidence of recent lactation, as indicated by large pigmented nipples.  Trapped snow 

leopards were assigned to 1 of 4 classes categorizing any trap-related wounds (Jackson et al.

1990, as adapted from Van Ballenberghe 1984).

3.3 Telemetry Equipment and Radio-tracking Procedures

The radio-telemetry equipment used was supplied by Telonics, Inc. of Mesa, Arizona.  

Each transmitter operated in the 149 MHz frequency band and was fitted with a fast (± 80

pulses per minute) - slow (± 65 ppm) mortality mercury ball tip switch or motion sensor, 

set to a delay time of 3 minutes; thus, the transmitter reverts to slow transmission following 

3 minutes without any head or neck movement.  Each collar weighed about 450 g.  Radio

signals were monitored using a Telonics TR-2 receiver (recharged with a solar panel) and a

hand-held 2-element Adcock or "H" receiving antenna. 

Radio-location was undertaken on foot, since aerial tracking would have been too costly and

difficult to arrange.  Daily attempts were made to contact and then locate the position of 

each radio-tagged snow leopard using triangulation by two or more observers and homing

techniques (Cochran, 1980; Samuel and Fuller 1994).  Each observer would search for 

signals from a prominent ridge or from the opposite slope of the valley; when contact was 

made with a radio-tagged snow leopard, the observer moved closer for more accurate 

compass bearings and locations based upon null rather than signal peaks (Samuel and Fuller

1994).  The most likely of two resulting 180 degree nulls was determined by observing 

radio-wave reception in relation to "blocking" landforms and different locations.  

Directional bearings were taken using a sighting compass and plotted on a 1:24,000 scale

topographic map (contour interval 100 feet) of the study area to provide a probable location 

and associated areal polygon.  Three to five bearings were taken at each location and 

whenever possible animals were located while stationary or at rest.
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Error in locating the source of signals resulted from variation in signal propagation due to

animal movement, transmitter pulse rate, other aspects of equipment operation and

performance, and from mapping imprecision or compass sighting error (Samuel and Fuller

1994).  The mountainous, rocky terrain strongly affected radio-wave propagation and 

reception range, due primarily to radio-wave attenuation, signal bounce and deflection 

(Amlaner and MacDonald 1980).  Distinguishing between direct ("line-of-sight") and 

reflected signals proved to be extremely time-consuming, and was often not possible.  

However, observer skill and success were enhanced by practicing with radio-transmitters 

carried by moving humans or placed (without the observer's knowledge) in different parts 

of the study area and thus subject to varying signal propagation interference.  The use of 

two tracking teams facilitated triangulation by permitting synchronous or nearly 

synchronous locations from different parts of the study area.  For a review of problems and

procedures associated with radio-telemetry, see Harris et al. (1990), Kenward (1987) and 

White and Garrott (1990).

Samuel and Fuller (1994) report that a 1° error in compass bearing to a true location results 

in 17.5 m of linear error per kilometer from the receiving site.  In addition, signal 

deflection and absorption due to the rugged terrain introduced bias that was both irregular 

and geographically difficult to predict.  However, it was usually possible to detect signal

reflection by moving a few meters and then observing signal response.  For these reasons 

we utilized bearings made closest to the source (but without moving too close as to disturb 

the animal in question) and those least affected by deflection.  In addition, efforts were 

made to avoid the use of bearings that intersected close to baseline sites, or those with

intersection angles of < 20° or >160°, since these usually result in relatively large error

polygons.  Except for locations with visual confirmation, the minimum triangulated area 

was about 3.2 ha (180 m2).  This grid size was chosen because most locations were made 

from a distance of 2 km or less, and tests in the field indicated that the average linear error

(difference between radio-location and true location) at this distance was on the order of 100 

- 150 m or 7.5°.  These locational distances were feasible even when animals were being

tracked from the opposite side of the Langu River valley, a procedure that greatly enhanced 

the possibility for obtaining unreflected radio signals.

Locations were not finalized until all information was in hand.  Based upon the quality of 

the null and variability in signal strength and reflectivity, each bearing was assigned to one 
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of 4 relative classes, indicative of overall signal reliability (see below).  Two or more 

resulting bearings were then plotted on a 1:24,000 topographic map, and the boundaries of 

the error polygon adjusted in light of ridgelines or other "signal-blocking" terrain features.  

The geographical center of each error polygon was used as the actual location, which was 

then transformed into grid coordinates.  Each locational polygon was classified according 

into one of the following categories: Good, fair, or poor locations were those in which 

subjects were placed within an area of less than 25 ha, 25 - 50 ha or more than 50 ha,

respectively.  

3.4 Daily Movement and Activity Patterns

Daily Movement:  An index of same-day movement was obtained by measuring the 

straight-line distance between locations of radio-tagged individuals on successive days. 

Records with no movement were excluded; a cat was considered to have moved if, when

relocated, its position had changed by at least 200 m.  Linear distance between successive

locations at intervals of one to five days were calculated for each snow leopard.  When 

more than one location was made in a given day, only the first location or the most precise

location was used in the analysis.  Locations whose area of fix exceeded 100 ha were 

omitted from the data-set.

Same-day movements were derived by computing the linear distances between repeated

locations made during a single day, and by following pugmark sets of tagged and untagged

snow leopards during periods of snowfall.  Distances moved and distance between 

individuals were tested for homogeneity of variance with Bartlett's test (Sokal and Rohlf 

1981).  When excessive deviation from normality and homogeneity of variance was 

detected, or when sample size was small, the Mann-Whitney U test (Daniel 1978) was used 

to test the null hypothesis that the distances moved by male and female snow leopard were

similar.  Distance between individuals of the same and different sex were compared using 

the Kruskal-Wallis one-way analysis of variance.

Activity:  Activity patterns of snow leopards were examined by monitoring the activity level

during one-minute sampling intervals at consecutive 5-minute periods throughout the day 

and night, for a total of 4,060 activity samples (%% = 3,051; && = 1,009).  

Determination of activity was based on transmitter pulse rate (active or inactive transmission 
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modes caused by presence or absence of head movement) and changes in signal strength 

during the monitoring period.  A short reset interval was employed in the transmitter's tip 

switch sensor, enabling the investigator to distinguish activity from normal periods of 

inactivity (Garshelis et al. 1982).  Changes in pulse rate that were less frequent indicated 

the animal was moving its head, but was basically inactive.  The following information was

taken during each sampling period: signal behaviour (constant or variable in strength, as 

with a signal fading in and out); signal strength on a relative scale of 1 (barely audible) to 5

(very strong); and whether active or inactive.  The following activity categories were

recognized: (1) active (travelling) = active pulse rate with frequent, and usually wide

fluctuations in signal strength as animal moves behind objects which absorb or deflect 

signals; (2) active (locally) = active pulse rate with less frequent and lower deviations in 

terms of signal strength, usually followed by periods of prolonged inactivity; and (3) 

inactive (resting) = inactive pulse rate, of constant strength.  However, since frequent 

relocations are required to distinguish between travelling and locally active animals, these

categories were lumped for the purpose of analysis. 

Inferential analyses were undertaken in order to examine the following hypotheses:

H1: Activity levels do not differ between individual snow leopards

H2: Activity is independent of time of day

H3: Activity is independent of the time of year (season)

Weather as a factor was not examined, since microclimatic conditions may vary 

substantially within short distances due to topographic and structural diversity associated 

with the mountainous terrain.  I assumed that temperature, cloud-cover, wind intensity and

precipitation data gathered at one location (base camp) would not be applicable to other 

study locales.

In order to better meet the assumption of independence, data gathered during consecutive 5-

minute sampling intervals were combined and averaged over a 30-minute period (proportion 

of intervals monitored in which active signals were logged) for a total of 48 distinct periods

during the 24-hour day/night period.  These were then grouped into hourly intervals and 

four time periods.  Three seasons were designated, each corresponding to relatively distinct
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social interaction phases exhibited by snow leopards (Ahlborn and Jackson 1988): 

fall/winter or generally the pre-oestrus period (November-February); spring or the post-

oestrus period (March - May 15); and summer (16 May through late June or early July 

when the field season ended).

A chi-square test for independence was conducted to determine if activity was independent 

of sex.  A Chi-square goodness-of-fit was employed to test whether the frequency of 

activity was proportionately distributed with respect to the time of day, according to 4 time

intervals (night = 2000 - 0355 hours; dawn = 0400 - 0755 hours; day = 0800 - 1555 

hours; and dusk = 1600 - 1955 hours Nepal Standard Time).  

I compared snow leopard activity among the snow leopards sampled using ANOVA 

techniques, with data from M1 being excluded as it was not studied over the same time 

frame as the other four animals.  This analysis compared activity among four snow leopards 

for a total of 3,646 samples, 3 seasonal periods, and four or 24 time intervals.  Several 

models were constructed to examine main, interaction and nested effects of different error

factors involved in snow leopard activity, using a least-squares analysis of variance 

procedure, PROC GLM for unbalanced designs (SAS version 6.04, SAS Institute, Cary, 

North Carolina).  Each model permitted comparisons between activity and each factor,

independent of the compounding effects of all other factors, so that activity is designated as 

a probability of being active under the stated condition(s) rather than as an actual percentage 

of observations where activity is noted (Garshelis and Pelton, 1980; Garshelis et al. 1982;

Villarrubia 1982).  Activity was categorized as either active or inactive, based on the 

dominant activity shown during each consecutive half-hourly interval.  Pairwise 

comparisons were performed within the context of ANOVA using Dunn's procedure, in 

which overall main effects are tested for significance.  If an overall effect is detected, each

pairwise test is made at the 0.05 significance level.  Generally, Bonferroni adjustments to

pairwise comparisons were precluded on the basis of the large number of categories 

employed in the model.  In order to determine which means were different from others in 

the model, a LSD (least significant difference) test (Fisher's LSD) was conducted.  The 

least square means, rather than the arithmetic percent active was used to graph activity

probability for each animal, as well as sex.
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The first model (Model 1) examined the relationship between activity level, individual and 

the time of day (24 intervals).  Model II substituted month for time of day, while Model III

investigated time of year (season) and time of day (4 intervals, with each individual being

analyzed for time and seasonal effects. A  similar analysis was performed by replacing

individual cat variations with sex as the main effect (Model IV).  The final model (Model 

V) included nested effects of sex within individual and sex within month and cat number.

The data were examined with respect to the following assumptions: (1) randomness,

representativeness and equality of sampling among individuals; (2) independence; (3) use of

mutually exclusive categories; (4) data is normally distributed; and (5) multicollinearity 

among variables.  Limitations of the data-set included an unequal sampling effort during the

hours of darkness compared to daylight and with respect to individual and sex.  Sampling 

effort totalled some 1,150 hours for male and 330 hours for female snow leopards.  

Although continuous 24-hour activity sampling was conducted, the times between 11 pm 

and 5 am (Nepal Standard Time) were under-represented in the data-set, with relatively 

sparse data for months other than January through May.  Except for M1, no monitoring of 

snow leopard activity was undertaken between July and November. 

3.5 Home Range Size and Spatial Utilization

Home range size and configuration was calculated using several techniques: minimum area

polygon method, defined by connecting the outermost locations (Mohr 1947 and Southwood

1966); the concave polygon (Clutton-Brock et al. 1982); the 95% bivariate normal ellipse

(Gipsen and Sealander 1972, Jennich and Turner, 1969); the 95% weighted bivariate normal

ellipse (Samuel and Garton 1985); the Fourier transformation (Anderson, 1982); and the 

Dixon and Chapman (1980) harmonic mean measure, as revised by Samuel and Garton 

(1987).  The software program McPaal (Smithsonian Institution, Washington, DC) was 

used to compute estimations for the concave polygon and the Anderson Fourier Transform. 

Bivariate ellipse and harmonic mean measure area and activity estimates were made using 

the PC-based program Home Range (Ackerman et al. 1990).

Information describing how animals utilize different portions of their home range are

biologically more meaningful.  I examined spatial patterns by (1) comparing cat use to the

Poisson distribution (Sokal and Rohlf 1981:84) and (2) developing harmonic mean measures 
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aimed at identifying core areas and centers of activity (Dixon and Chapman 1980, Samuel 

and Garton 1987).  Under a technique pioneered by Dixon and Chapman, harmonic 

estimators are computed using an algorithm based upon distances between all animal 

locations and all intersections of a grid lattice superimposed upon the home-range area in

question.  A utilization distribution is derived using the harmonic mean measure at each 

grid point, with utilization contours being estimated as percentiles of the utilization 

distribution.  Grid points with harmonic values that exceed the highest harmonic value for 

any animal location are considered to be outside the home range and are therefore excluded

from the utilization distribution.  The potential utilization is estimated at each grid point by

dividing the total number of animal locations by the squared harmonic value at each grid 

point.  Potential utilization is summed over all grid points within the home range and scaled 

to 1.0 to create a utilization distribution.  Percentages of utilization are then determined 

from the ordered sum of grid points.  Animal observations were relocated to a constant 

mean distance from the nearest grid point, in order to compensate for excessive sensitivity 

to scale parameters (Spencer and Barrett 1984).  This distance is the mean radius of the 

grid, so that harmonic mean measures reflect grid size (Samuel et al. 1985).  The program 

Home Range implements an algorithm which adjusts the grid cell size depending upon the

number of animal locations and their density within the home range boundary.  Core-area 

use was quantified according to Samuel et al. (1985), and statistically significant core areas

were identified using a O2 test (Samuel and Green 1988) which compares observed data to a

uniform, cumulative distribution model. 

Since the harmonic mean method is based upon average travel distances among animal 

locations and the lattice of grid points, it is not strictly required that sequential locations be

independent.  For the purpose of spatial use analysis, the assumption that locations be 

selected randomly (i.e. equal probability for all locations) must be satisfied.  The study 

team made special effort to ensure that sampling intensity remained relatively constant 

through time and that all parts of the study area were searched until animals were located.  

A constant scale and set of grid parameters was employed in order to permit comparisons

between individual home ranges.  Advantages of the harmonic mean estimator include the

ability to support multimodal activity centers, which need not be in the center of the 

distribution and which are more robust to changing use patterns that other methods. The

influence of outliers is less pervasive, and locations are not as sensitive to concerns of serial 
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correlation (Ackerman et al. 1990). However, large sample sizes (50 - 100 locations per 

season) are required to produce stable distributions. 

Key assumptions relating to spatial and temporal sampling include (1) independence of

locations; (2) the search effort should not be unduly biased toward accessible parts of an

animal's known or potential home range; and (3) observations should be randomly 

distributed with respect to season, activity or the 24-hour period (Harris et al. 1990). 

Autocorrelation of observations was minimized by ensuring that successive locations were

separated by a period of 12-18 hours or more, a time interval judged sufficient to allow 

animals to move from one end of their home range to the other (Swihart and Slade 1985a).  

This time interval was based on observations showing all tagged individuals were easily 

capable of moving from one extreme of their home range to the other within a 24-hour 

period.  Special effort was devoted to searching inaccessible areas for missing signals by

visiting high adjacent ridgelines, and by using two teams of observers.  It should be noted 

that aerial surveillance is the only reliable means of detecting animals when they are located 

in relatively inaccessible areas.  Given the rugged terrain and ground-based tracking, it was

usually not possible to locate animals during the hours of darkness.  Most locations were 

made while animals were bedded or locally active about their day-time bedding site; 

therefore, the locational data collected reflect the snow leopards' daytime home range use

pattern only.  

Day-after-capture locations, fixes with an error polygon exceeding 50 ha in extent and 

duplicate same-day locations were excluded from data-sets used in home range estimates 

and activity center analyses. For those days with more than one location, the first or 

location having the smallest error polygon was selected through the use of weighting values.  

A cumulative area curve of home-range size was developed by computing the area within

successive two-week minimum area polygons, in order to assess the adequacy of the 

sample.  The Home Range program was used to detect serial autocorrelation, identify 

outlier locations, and to compute home range statistics, such as significant core and 

utilization areas, minimum convex polygon size, and bivariate distribution tests using the

Cramer-Von Mises goodness-of-fit statistic (Ackerman et al. 1990). The other technique

employed for assessing spatial utilization involved allocating each location to its appropriate

0.25 x 0.25 km square grid cell, and then determining whether the observed distribution

deviated spatially from an expected normal Poisson distribution.  Home-range size between 
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individuals were compared using the Kruskal-Wallis one-way analysis of variance.  The 

Mann-Whitney U test was used to determine whether range size differed according to sex.

3.6 Habitat Mapping, Characterization and Utilization

Radiotelemetry is an invaluable tool for investigating spatial and habitat use patterns, 

especially in a secretive species like the snow leopard (Samuel and Fuller 1994).  This study

focusses upon second-order (home range) and third-order (use of habitat components within 

the home-range) selection processes described by Johnson (1980). 

Habitat Delineation and Mapping Procedures:  Maps depicting landform and vegetation

distribution were prepared for the study area (Figures 2 and 3).  This required developing a 

base map for the study area at a scale of 1:24,676 from a 1:50,000 scale Survey of India

topographic (contour interval = 100 ft) map of the project area.  Since stereoscopic aerial

photographs were unavailable, landform and vegetation polygon types were hand-mapped, 

by systematically visiting high observation points (such as ridgelines and opposite valley

slopes), and drawing the polygon boundaries of selected landscape and vegetation features 

with the aid of binoculars, spotting scope, sighting compass, and a clinometer.  In addition,

clues such as permanent or seasonal drainages, cliffs or other prominent landscape features

shown on the topographic map were used for orientation.  The study area contained 

numerous small drainages that aided in fixing a location and more accurately aligning 

polygon boundaries.  Maps were updated whenever errors were detected until a reasonably

accurate representation of landform and vegetation had been prepared for the primary study

area.  Landform and vegetation units smaller than 3.0 ha in size were not mapped.  

Landform types were based on the amount of land-surface ruggedness and brokenness 

induced by terrain features such as gullies and other drainages, ridges, rock outcroppings,

natural surface undulations, and related topographic elements (Beasom et al. 1983).  This

involved identifying and mapping each landform polygon boundary from visual, on-the-

ground inspection, by examining topographic maps for the area, or by using a combination 

of techniques.  Relative land-surface ruggedness was indicated by the number, density and

complexity of contours, as well as the presence of seasonal or permanent drainages and 

related topographic features.  Other indicators for land surface ruggedness included 
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variation due to change in elevation, slope steepness and aspect over distances of 100 - 200 

m or less.

Nine terrain types were distinguished, including 4 classes specifically describing land-

surface ruggedness (cliff, very broken, broken and smooth-surfaced) and five classes 

defining essentially linear landforms like ice and glaciers, landslide and rockfalls, river 

bluffs, riverine terraces and river or major stream beds (Table 3).  In addition to cliffs, 

these linear or "azonal" landform types appeared to typify areas most often used by snow

leopard for travel purposes.  Seven vegetation types were recognized, based on a 

combination of life-form and dominant plant species (Table 4).  The availability of each 

habitat and vegetation type in the project area was computed using GIS (Tables 3 and 4).

Vector- and raster-based Geographic Information Systems (GIS) software facilitated habitat

analysis and home range studies (Burrough 1986).  Coverages were digitized using 

workstation Arc-Info (Environmental Systems Research Institute, Redlands, California) at 

the Midcontinental Ecological Science Center, National Biological Service in Fort Collins,

Colorado.  These coverages were transported to personal computer GIS software (PC Arc-

Info 3.4 D Plus), and a comprehensive data-base of spatial attributes was developed and 

used to investigate spatial habitat use patterns.  The GIS themes developed consisted of 

point, line and polygon coverages, including all cat locations, major drainages in the study 

area, and contours at an interval of 152 m (500 feet) derived from a topographic map 

enlarged to a scale of 1:24,676.  In addition, maps of vegetation types and landform 

features described above were digitized at the same scale.  A raster-based program (IDRISI,

Clark University, Worcester, Massachusetts) was used to develop slope gradient and aspect

DEM models of the study area, and to examine landscape pattern measures of habitat

heterogeneity, including relative richness, diversity, dominance and fragmentation (Forman 

and Godron 1986). 

Habitat Characterization:  Selected habitat parameters were measured at randomly located

plots (N = 150), in approximate proportion to the occurrence of each major landform and

vegetation cover types in the core study area.  Each sampled site consisted of a 100 square

meter plot placed with one side parallel to the dominant aspect.  Five one meter-square 

subplots were designated, one in each of the 4 corners with the remaining one in the center  
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Table 3:  Description of landform types in the study area

Landform Type
and Code

Land
Ruggedness
Index

Percent
Occurrence

Description

Terrain Ruggedness or Zonal Type:

Moderately
Broken Terrain
(2)

2 12.8 Terrain moderately to strongly broken by
rocky outcrops, drainages (gullies) 
and ridges

Very Broken
Terrain (3)

3 11.7 Very heavy broken cliff terrain with
interrupted ridgelines

Smooth Terrain
(4)

1 39.2 Smooth, relatively even-sloped, gently
rolling terrain with few rock outcrops

Cliff (5) 4 33.7 Cliff (slopes generally exceed 50°) (C1 =
cliff with rock and/or vegetative 
cover; and C2 = cliff inaccessible for 
blue sheep and snow leopard)

Azonal or Linear Terrain Type: a

Landslides &
Rockfalls (6)

n/a 0.7 Landslide and/or rockfall

Glacier (7) n/a not
applicable

Glacier (see text)

River Bluff (8) n/a 0.03 River bluff

River-bed (9) n/a 1.8 River or major stream bed

Riverine
Terrace (10)

n/a 0.1 Riverine terrace

Notes: Area computed from landform cover map (prepared in the field), based on 1,096 
random points in the GIS data-set.

Zonal types = non-linear landform categories (see text); Azonal types = predominantly linear
landform features (see text); 

Ruggedness index = degree of land-surface ruggedness (structural diversity), ranked from 1 
(low) to 4 (high) according to Beasom et al. (1983)

a Combined percent occurrence of types 6,8,9 and 10 =  2.6%
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Table 4: Description of major vegetation cover types in the study area

Vegetation
Type and
Code

Percent
of Study
Area

Description

Barren
(BA)

53.3

Less than 10% plant canopy cover. Dominated by exposed bedrock or
talus materials with a few, often widely scattered plants.

Alpine
Grassland
 (AG)

15.9 Grassland dominated by Carex spp. and a few perennial grass species
with some scattered clumps of low shrubs.  Usually found above
elevations of 3,900 m. 

Alpine
Shrubland
(AS)

16.1 A low shrub type dominated by Caragana versicolor and found 
between elevations of 3,800 - 4,400 m.

Mixed
Shrubland
(MS)

11.4 A species-rich shrubland generally found below 3,800 m.  Typical sites
contain low Juniperus indica trees with 6 or more common 
shrubs as high as several meters.

Riparian
Woodland
(RI)

2.0 Narrow and very discontinuous stands of Populus ciliata, interspersed
with a variety of shrubs and found along permanent water-courses.

Birch 
Forest
(BF)

1.2 Birch (Betula utilis) forest or scrub occupies the more mesic northerly
aspects at elevations of 3,800 m or higher.

Pine Forest
(PF)

0.2 Coniferous forest dominated by Pinus wallichiana with an understory 
of shrubs interspersed with shrubland. 

Note:  Based on estimates for general study area derived from the vegetation base map using the 
GIS data-set
* combined percent occurrence for tree cover-types = 3.4% 

of the plot.  The dominant elevation, slope, aspect, land-surface ruggedness type, vegetation

type, and specific topographic feature (e.g., ridge, knoll, gully, cliff, landslide etc) were 

noted on a data-form, and its location plotted on a map.  Vegetation was characterized by 
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recording the percent life-form composition and canopy coverage (6 cover classes) present 

in the central meter square subplot, according to Mueller-Dombois and Ellenburg (1974).  

Life-form composition was defined as the percentage cover that each life-form (grass, forb

and/or perennial herb, shrub, and tree) contributed to the total percent canopy cover of the 

plot.  Percent canopy cover was estimated by projecting the extent of above-ground plant

parts upon the ground surface.  For each of four cardinal compass sectors (NW, NE, SW, 

and SE), the distance from the geographic center of the plot to the nearest shrub at least one

meter in height, and the nearest boulder at least 1 m high and 1 m across, but located 

within the 100 meter square plot, was measured.  A constant value was used for all features

located outside the plot boundary.  Rock and shrub heights were measured to the nearest

centimeter.

In order to investigate the hypothesis that visibility may be an important factor in the snow

leopard's selection of different habitat types, horizon distances were recorded.  It was 

assumed that the distance to the nearest horizon is an acceptable index for assessing 

visibility under different terrain ruggedness (landform type) conditions.  Distances were

measured by having the observer stand at the center point of each plot and then successively

look upslope, downslope and in either "across-slope" direction in order to determine 

horizon distances for each sector.  These were either visually estimated or determined using 

a range-finder, with distances in excess of 120 m all being visually estimated.  The horizon 

was considered to constitute the nearest visual obstruction as viewed from observer 

eye-level (i.e. about 2 m above the land-surface).  Typically, the nearest physical horizon

consisted of a gully, ridge edge, cliff, or rock outcrop, while obstruction due to vegetation

varied according to the vegetation type present.

Blue sheep and Himalayan tahr sign was noted by tallying the number of pellet groups 

located within each of the five one-meter square subplots, while the number of beds lying at

least 50% within the 100 m square plot was also recorded.  The number of subplots or

quadrants with pellet groups was also noted.  Pellet groups with more than 50% of their 

mass located outside the quadrant boundaries were not included in the tally.  The absence or

presence of fresh tracks was noted.

Habitat profiles were developed using standard descriptive statistical analyses.  One-way and

two-way analysis of variance (ANOVA) was used to examine differences between habitat 
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features found among each landform and vegetation type; when transformations failed to 

correct for heterogeneity of variance, the Kruskal-Wallis one-way analysis of variance was 

used.  The Tukey HSD (Wilkinson 1990:222) and Dun multiple means test (Daniel 

1978:212) were used to determine which parametric and non-parametric means differed

significantly.

Habitat Utilization:  Habitat use was determined by matching grid coordinates for snow 

leopard locations with vegetation and landform types indicated by mapped coverages, with

additional information accruing from following pugmark track sets and by recording habitat-

level placement of snow leopard sign like scrapes, scats and rock-scents.  Habitat 

availability was determined by measuring the area of each habitat type present in two ways: 

(1) slope steepness, aspect and elevation were determined from a randomly located sample 

of 1,096 points overlain on the topographic map according to procedures described in 

Marcum and Loftsgaarden (1980); and (2) Landform and vegetation type, and distance to

selected habitat types were computed using the GIS (Table 5), which also provided more 

precise estimates of coverage for each mapped type (Clark et al. 1993).  Animal locations

derived from radiotelemetry were assumed to represent a reasonably unbiased and serially

independent sample of habitats utilized by snow leopards occupying the study area, 

particularly with regard to daytime bedding.

The hypothesis that snow leopards use available habitat categories in proportion to their

occurrence was examined using methods described by Neu et al. (1974) and Marcum and

Loftsgaarden (1980).  Habitat use was compared to availability within the study area, and

preference or avoidance of particular types determined.  The Chi-square goodness-of-fit

analysis determines whether use occurs in proportion to available habitat, with differences at 

the 95 percent probability level taken as indicating a significant difference between use and

availability.  Categories with low expected proportions of usage, such as azonal or linear

landform types (categories 6,8,9 and 10), were combined into a single category for analysis

(type 20).  Vegetation types subalpine scrub (SA) and mixed scrub (MS) were also 

combined, since these communities differed little in structure, while low expected 

frequencies of the three tree types necessitated their combination as well.  Glaciers 

were excluded from consideration because none were located within the home area of the

radio-tagged leopards. 
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Table 5:  Variable measurement techniques used in assessing habitat use by snow leopard.

Variable Measurement Technique

1. Elevation Measured from topographic map (100 ft contour interval)
and DEM-generated model with a 500 ft interval

2. Aspect Measured from topographic map and derived from DEM
model

3. Slope steepness Measured from topographic map and derived from DEM
model

4. Ridgelines First and second order ridges digitized from topographic
map (1:24,676)

5. Drainages First and second order drainages digitized from 
topographic map (1:24,676)

6. Landform Types Digitized from specially prepared map (1:24,676)

7. Vegetation Cover Types Digitized from specially prepared map (1:24,676)

9. Snow leopard locations Digitized at 1:24,676 scale from triangulated data-base

10. Spatial buffering, distance
estimators, area estimates and
landscape diversity indices

Digitally computed using vector and raster GIS systems

Data-sets selected conformed with the following assumptions: (1) the use of mutually 

exclusive categories; (2) all samples had at least one expected observation in each habitat

category examined; and (3) no more than 20% of all categories contained less than 5 

expected observations.  The data were also judged to satisfy the assumption that all snow

leopards had equal access to the designated habitat types and that each observation had been

gathered independently of the others, in a relatively random, unbiased manner.  Bonferroni

simultaneous confidence intervals were constructed to determine which categories snow

leopards used significantly more (over-utilized or "preferred") or less (under-utilized or

"avoided") than expected by chance alone (Miller 1966, Neu et al. 1974, Byers et al. 

1984).  In general, the terms "under-utilized" and "over-utilized" are preferable to 

"preferred" or "avoided" (see below).  Circular distributions such as aspect were analyzed

according to Zar (1974).  Individuals were pooled by sex because of the small sample sizes.  



40

For each parameter, chi-square tests of homogeneity (Daniel 1978) were conducted to 

determine if they differed  significantly by sex; if no difference was reported at P < 0.05, 

data from each sex were lumped.  If a significant difference was found, the samples were 

not combined.  Habitat data were also pooled, possibly obscuring seasonal differences.

Selection implies that an animal is choosing among alternative habitats or foods available to 

it (Johnson 1980).  Use of a specific habitat type is selective if it is exploited 

disproportionately to its availability.  It is important to emphasize that selection does not

necessarily imply preference, which can only be determined independently of availability: 

thus animals must be offered access to different resources on an equal basis, a procedure

typically requiring enclosure experimentation.  The approach used in this investigation

corresponds with the second study design described by Thomas and Taylor (1990:324), in

which data on resource use is gathered for each individual but pooled across individuals and

repeated observations of individuals.  Thus, pooling of location observations (in reality

subsamples or "pseudoreplicates") from different individuals serves to mask individual

differences and may introduce bias if some individuals contribute more substantially to the

sample than others (i.e., snow leopards M2, F1 and F5 in this case).  Aebischer et al. 

(1993) recommended a log-ratio technique of compositional analysis which addresses 

problems related to (1) inappropriate level of sampling and sample size; (2) non-

independence of proportions; (3) differential habitat use by groups of individuals; and (4)

arbitrary definition of habitat availability.  However, my study does not meet their 

minimum required sample size of at least 6 individuals.  Similar constraints precluded use 

of fractal analysis as a means for investigating individual habitat preferences within the core 

use area (Gautestad and Mysterud, in prep.).

Due to intense solar insolation, which caused any snow-cover to melt rapidly, the Hargis 

and McCullough (1984) technique for characterizing habitat along travel routes had limited

applicability, although it served to identify or substantiate terrain features used by snow 

leopard for travel. 

Core and Non-Core Area Use and Classification:  Use of habitat by snow leopard was

compared with respect to core and non-core area locations, in order to examine the 

hypothesis that the core area contained more suitable habitat than non-core areas.  

Specifically, I hypothesized that the strong preference shown by radio-collared snow 
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leopards for the geographically smaller core zone reflected (1) closer proximity to ridges, 

river-beds and other linear features used for travelling and social marking; (2) enhanced

availability of landforms and vegetation associations preferred by snow leopard; and (3) 

more favorable habitat for blue sheep, the snow leopards' principal prey item.

The two-sample t-test and Mann-Whitney non-parametric equivalent were used to compare

mean values for a wide range of spatial habitat measures derived from the GIS model, 

following procedures described previously.  For methods used in assessing blue sheep use and

habitat suitability, see Section 3.8.  Discriminant Function Analysis (DFA) was used to 

develop a model that accurately classified sample sites according to snow leopard core or 

non-core areas (Afifi and Clark 1984).  Based upon habitat patterns shown by radio-tagged

animals and a review of the available literature, a selection of variables were subjected to 

R-type orthogonal factor analysis, and the 3-5 variables with the highest factor coefficients 

were used in the DFA (Capen 1981; Johnson and Pelton 1981).  Sample size was large 

relative to dimensionality in order to maximize discriminate robustness (Williams et al. 

1990).  The proportion of variables to sample size was kept low.  After transforming non-

normally distributed data, and to satisfy the assumption of independence of variables, highly

correlated habitat parameters (r > 0.75) were removed, and the remaining variables were 

entered in a stepwise DFA to create a linear combination of variables that most accurately

separated the two groups.  Values to drop variables were set at 0.10.  Autocorrelation was

considered critical if the correlation matrix value exceeded 0.7.  The best model was 

considered that which exhibited the lowest Wilks' Lambda values and an F-ratio greater 

than 2 for each discriminant coefficient examined (Afifi and Clark 1984). 

DFA requires that the following assumptions be satisfied (Afifi and Clark 1984): (1) habitat

parameters are randomly sampled and resulting model variables (independent) are 

multivariately normally distributed (equality among variances-covariance matrices for all

populations); (2) model variables are not autocorrelated, as indicated by covariances which

exhibit homogeneity within-groups; and (3) Nonadditivity (i.e. no additivity among selected

variables).  DFA is extremely sensitive to unequal covariance, requiring large sample sizes. 

Variables found to be non-normally distributed were transformed, using an appropriate

transformation.  Outliers were identified and removed, and the problem of auto-correlated

variables was avoided by selecting only one of each set of variables known or suspected of

being correlated.  The magnitude and sign of the canonical coefficient values was used to 
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assist in selecting variables most useful in explaining variation within the data-set.  Finally, 

I assumed that no other core areas were available to the snow leopards within the range of 

the radio-tagged snow leopards, and that harmonic mean activity centers reasonably 

reflected their spatial utilization pattern. 

Landscape Diversity and Habitat Fragmentation Assessment:  A raster GIS was used to

compute selected measures of habitat relative richness, diversity, dominance, fragmentation 

and interspersion (Turner 1989).  Landform and vegetation maps were rasterized using a 

cell size of 15 x 15 m; index values were then computed for each cell across the entire 

study area using a roving 3x3 pixel window (Eastman 1992:130).  Statistical comparisons 

were then made between random and cat sites, using tests previously described. 

3.7 Social Interaction and Marking Behaviour

Social Interaction: Residents were defined as adult or subadult snow leopards which showed

site attachment, and were continuously resident in a predictable area (home area or home 

range) for at least 6 months or more (Hemker et al. 1984).  Subadults were assumed to 

have dispersed when they left the defined area they had used for at least a year.  Transients 

were classified as those individuals that showed site attachments of less than 6 months. 

Individuals, other than members of family groups were judged as being "in association" if

located no more than 200 m apart on the same day.  The degree to which snow leopards

socialize was studied by two means: (1) Computing straight-line distances between each

individual located on the same day; and (2) interpretation of sign (pugmarks, scrapes, scats,

scent-sprays and claw rakes) found throughout the study area as well as long-term, repeated

"sign transects" (see section on marking behaviour). 

Linear distances between individuals on the same day were computed using the first location 

for each individual on that day.  The Kruskal-Wallis one-way analysis of variance was used 

to test the null hypothesis that distances between individuals of the same and different sexes 

on the same day did not differ. If the null hypothesis could be rejected, a non-parametric

multiple comparison test (Daniel 1979: 211 - 214) was used to determine which mean was

different.
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Marking Behaviour: Studies of marking behaviour were led by Gary Ahlborn, and are

summarized here in order to promote a better understanding of topics covered by this thesis. 

The reader is referred to Ahlborn and Jackson (1988) for a detailed account of the 

methodology employed.

A transect nearly 5 kilometers in length and located in the center of the snow leopard 

ranges was demarcated and selected features characterized (see Figure 19, Chapter 9).  It 

was sampled at regular intervals (every 10 days or whenever a tagged leopard was known to 

be in the area) over a two-year period (December 1983-June 1985) for all snow leopard 

sign, including pugmarks, scrapes, scats and scent-sprays.  Each item of sign observed was

identified and catalogued, and each site was unobtrusively marked for future identification 

and monitoring.  Criteria were developed for measuring and aging sign consistently, and a

record maintained of the appearance and eventual disappearance, through aging, weathering 

or other factors, of each sign item. 

Sign changes were attributed to a particular individual only when there was good evidence 

to implicate its presence in the area. The number of times when cat tracks were observed 

along a section of the transect were designated as "known visits".  The frequency of 

transect crossing by radio-tagged snow leopards was estimated by connecting each 

individual's consecutive locations with a straight-line, then counting the number of 

intercepts with the transect.  Cat transect crossings were used as an index for visitation 

rates.  Known and suspected visits were compared with the frequency and numbers of sign 

type changes to estimate the likelihood and intensity of marking during two seasons, as well 

as throughout the entire period monitored.

Detailed habitat information was recorded at random points along each transect (scrape sites 

= 58; random sites = 53).  Particular attention was given to characterizing topographic 

features (eg., promontory, rock outcrop, riverain terrace, cliff etc.) in relation to marked 

sites.  In addition to the repeated sign transect, a total of 49 "one-time only" transects were

conducted in various parts of the study area to investigate the hypothesis that density of sign 

is related to snow leopard density and differentially associated with various landscape and

terrain types, as well as specific topographic features.  Each time snow leopard sign was

encountered along the transect, the type of sign (scrape, feces, tracks, rock-scent and 

tree-rake), as well as its abundance and location were noted.  The visibility of each scrape 
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was noted and sites with scrapes were judged as relic or non-relic.  Transect lengths and

distances between marked sites were determined by pacing.  Three hundred and twenty-one

systematic sampling plots, located at 200 m intervals, were used to characterize vegetation,

habitat, terrain and topographic features along each transect.  In addition, a tracking 

medium quality index was calculated (Van Dyke et al. 1986), and the presence/absence and

relative abundance of ungulate sign was recorded.

Scent-sprayed sites were detected by their characteristic odor, especially during winter and

spring when most scent spraying activity occurred.  Accompanying evidence of leopard use

included discoloration of the marked face by urine, pugmarks showing where the cat had 

backed up to a boulder, facial hair attached to the sprayed surface indicating cheek rubbing, 

and rarely, claw marks where it had reached up to investigate the scent.  Odor was found to 

be a more reliable indicator than discoloration for validating scent-sprayed rock faces.  

Sprayed sites were characterized by noting such habitat parameters as elevation, aspect, 

slope, type of feature marked and dimensions (overhang of surface, height, length and 

width of mark and marked surface), relative strength of odor, and presence of leopard hair 

(an indicator of cheek-rubbing).  Horizon distances were measured as described earlier 

(Section 3.6).  The density and height of shrubs and boulders greater than 1 m in height, 

but within 10 m of the site was determined.  The presence/absence and placement of 

scrapes was noted, and if found, their relative visibility and dimensions were recorded. 

Twenty-five spray-sites were permanently marked and mapped, and then visited at regular

intervals to quantify visitation rates. 

3.8 Food Habits and Prey Species Investigations

Food Habits: Food habits were primarily studied through the analysis of scats, as attempts 

at examining the kills of radio-tagged cats proved exceptionally difficult due to precipitous

terrain that often precluded access to the suspected kill site.  Snow leopard scats were 

identified on the basis of size, color and location, but there was little danger of confusing 

them with other species.  Snow leopards were not sympatric with forest leopard in the core

study area, although overlap existed south of the Langu River (an area not used by any 

radio-tagged individual) and to the west of the core area, near Dolphu (also not utilized by

tagged animals).  Generally, it is extremely difficult to distinguish between scats from the 

two species, although important differences exist with respect to marking behaviour 
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(Ahlborn and Jackson 1988; Jackson and Hunter 1995).  Scats were prepared according to

Johnson and Aldred (1982), and Korschgen (1980); identification of prey items was made 

by comparing hair surface scale patterns of guard hairs with those of a reference hair 

collection comprising potential prey species from the same area (Weingart 1973). 

Cross-sectioning of hairs was necessary (Hilton and Kutscha 1978; Berwick, 1974), with the

medulla-cortex shape offering additional clues for discriminating prey species.  Mukherjee 

et al. (1994) recommended examining at least 20 hairs/sample in order to detect multiple 

prey species.  We compared our criteria with those developed independently by Oli (1993) 

for identifying mammalian hair found in snow leopards scats collected in the Annapurna 

region of Nepal.  Scat contents were reported as frequency of occurrence (percent of total 

scats in which an item was found) and the percent occurrence (number of times a specific 

item was found as percentage of all items found).

Successive-day movements of radio-tagged snow leopards were used to estimate the 

frequency with which they killed prey large enough (blue sheep or Himalayan tahr) to 

detain them for more than a day in one place.  Except for females with sedentary cubs, all

stationary locations were considered to constitute suspected kills; in most cases, we were 

unable to visit sites to confirm predation because of the extremely rugged terrain, or our 

ability to detect prey remains was hampered by thick cover and scavengers like the 

Himalayan Griffon vulture that quickly disposed of the remains left by snow leopards.  Kill 

rate estimates were based on consecutive locations in which no more than 7 calendar days

elapsed between consecutive locations. 

Prey Species Studies: Information on the prey species was gathered by K.B. Shah, who

collected data on the number, distribution and sex-age ratios for blue sheep and Himalayan 

tahr through the regular census of 6 censusing blocks from fixed observation points, using a

spotting scope with 22-X and 60-X eyepieces.  Blue sheep and tahr were classified 

according to the age classes described by Schaller (1973a & b, 1977) and Wilson (1981).  For

each herd or individual sighted, the following information was recorded: number, sex 

and age class in group, elevation, slope, aspect, vegetation type, distance to nearest escape

cover, position on slope, activity and distance to observer.  Each sighting was mapped.  In

addition, herd activity was studied at 5 or 10 minute intervals throughout the daytime by 

noting the number of individuals inactive (standing and lying), the number active but not

feeding, and the number active and feeding.



46

Blue Sheep Habitat Utilization Patterns: I investigated habitat preferences of blue sheep 

using sign as an index of relative abundance and use (White and Eberhardt 1980).  The

presence, absence and abundance of ungulate sign was noted during habitat sampling (see

Section 3.6).  Pellet abundance was assumed to reflect bedding and foraging use.  

Differences in the mean number of pellet-groups, tracks and beds in randomly sampled 

plots along transects were used to assess the extent to which blue sheep preferred different

vegetation and landform types.  Since defecation rates may vary with respect to type of 

activity (Collins and Urness 1981), indices of track and bed site abundance, as well as 

incidental observations were used to verify conclusions derived from pellet group 

distribution surveys.  Differences in pellet-group means were examined using a maximum

likelihood estimator robust to measures of contagion, and not requiring assumptions of a

common k value (White and Eberhardt 1980).  Statistical analyses were conducted using the

PC-based computer program PELANAL developed by these investigators.  A non-parametric

multiple comparison test was used to determine which means differed significantly (Daniel

1979:211-214).  Finally, these data were used to develop a spatial habitat suitability index

model for blue sheep, which is described in Section 8.4.

3.9 Statistical Analysis

Except as noted, all statistical analyses were undertaken on 386 and 486 based PC 

computers, using SYSTAT as the primary software package (Wilkinson 1990).  Spreadsheet

software (1-2-3, Lotus, Inc. or Quattro-Pro, Borland, Inc.) was used to prepare and manage 

data for input to statistical packages.  Sample distributions were examined for shape, 

outliers and normality using univariate graphing techniques such as normal probability plots 

and stem-and-leaf diagrams, in addition to standard measures of skewness and kurtosis.  

Data were examined for homogeneity of variance using Bartlett's test (Sokal and Rohlf 

1981).  Where required, outliers were removed and standard transformations used to correct

non-normally distributed variables prior to detailed statistical analysis.  Where data 

remained abnormally distributed even following transformation, non-parametric tests were

employed.  The Kolmogorov-Smirnov one sample test was used with nominal data to 

examine goodness-of-fit, while comparisons of location and dispersion with respect to two

samples were made with the Kolmogorov-Smirnov two-sample test.  Unless otherwise 

stated, the 95% significance level was used to accept or reject the null hypothesis.  See

preceding sections for specific analysis procedures employed. 



Attaching a radio-collar to snow leopard No. 3 - 1983

©  Darla Hillard

Cat 02, a male, on its release following immobilization and attachment of the radio-collar

©  Rodney Jackson 
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PART II RESULTS

CHAPTER 4 STUDY ANIMALS

4.1 Capture and Immobilization

Results of live-trapping and chemical immobilization are described in detail by Jackson et 

al. (1990).  A brief summary follows:

Capture: Traps were placed at 16 sites along the Langu River and monitored for a total of 

3,899 trap-nights.  The overall trapping success was 0.59 percent, although success at live-

trapping varied between 0.37 and 0.92 percent during the four year period.  Snow leopards 

were trapped 23 times, but in 13 instances the animal was able to extricate itself and escape

prior to immobilization.  No animals were caught after the beginning of May and most were

trapped in March or April, a time period generally corresponding with the snow leopard's

mating season.  All the radio-collared individuals revisited the area where they had been

trapped, although most detoured around the actual site of capture to rejoin the trail further

along.  Pugmark searches indicated that on at least 30 occasions, snow leopards travelled 

within 50 m of a trap site.  Although various attractants were used, no obvious patterns 

could be detected.  No major trap-related injuries were observed, but several important

modifications to trap design and placement were recommended by Jackson et al. (1990).  

Immobilization: Three male and two female snow leopards were immobilized and 

radio-tagged, with two males (M3 and M2) being recaptured once and four times 

respectively, for a total of 10 immobilizations.  The snow leopards immobilized exhibited a

wide tolerance to ketamine hydrochloride, but relatively high dosages were required to 

induce adequate ataxia, presumably because entrapped snow leopards were highly excitable 

and metabolizing the drug more rapidly.  No animals were lost as a result of 

immobilization.  All individuals exhibited varying degrees of salivation, but only in two 

cases was the administration of atropine sulfate deemed advisable.  However, substantial

muscular rigidity was noted in all immobilizations, and the use of a tranquillizer or muscle

relaxant such as xylazine in association with the ketamine hydrochloride is strongly

recommended, provided its effect is chemically reversed with yohimbine hydrochloride 



48

prior to release of the animal.  Jackson et al. (1990) recommend that future immobilizations 

of snow leopard utilize a dosage of 7 - 9 mg/kg ketamine with 1 - 1.5 mg/kg xylazine and

reversal with 15 mg yohimbine hydrochloride (Antagonil) per adult animal.  Schaller et al.

(1994) used CI-744 or Telazol (A.H. Robins Co., Richmond, Virginia.), a combination of

tiletamine hydrochloride (HCl) and zolazepam HCl, at a dosage of 3.7 mg/kg to immobilize

snow leopards in Mongolia. 

4.2 The Study Population

Radio-tagged Animals: Table 6 indicates the sex, age and body measurements for the five 

snow leopards which were radio-tagged.  Judging by body size, weight and testicle 

prominence, M1 was a fully grown, reproductively active male.  Contact was lost some 

four months after his capture, although large male snow leopard pugmarks continued to be

periodically sighted each field season and M1's transmitter could have therefore 

malfunctioned.  However, the relative paucity of large-sized pugmarks suggested either a

vacancy in the home range occupancy of fully grown male snow leopards or a situation in 

which the dominant male(s) roams over a much larger area than that utilized by the two 

more youthful males radio-tagged, M2 and M3.  At capture, these males were classified as

subadults, aged about 30 and 35 months respectively.  They could have been litter mates, as

they were similar in size and appeared to be relatively tolerant of each other, at least during 

the initial months they were radio-tracked.  When M2 was recaptured a year later, he 

showed facial scars suggestive of intraspecific fighting.  Long-distance vocalizations and

movements by M2 during the time F1 copulated suggest that he may have at least tried to 

breed with her.  About this time, contact was lost with M3, suggesting that either he left the

area, or that his radio-transmitter malfunctioned.  The presence of pugmarks of similar size 

class were found in areas where telemetry confirmed M2 had not recently visited, indicating 

that M3 or another young adult snow leopard was using the same general area concurrently.

Female F1 was judged to be at least 4 years of age, and nipple coloration and size indicated 

that she had given birth previously.  Several months later, in early June of 1984, she gave 

birth again to at least two cubs (whose tracks were seen at the start of the next field 

season).  Despite frequent attempts at establishing visual contact, she was not seen with her 

two cubs until they were just a year old, on June 10, 1985.  Although the position of radio-

tagged cats could be established with reasonable accuracy, the extremely rocky, broken 
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Table 6: Sex, age and physical features of radio-tagged snow leopards 

Animal
Identification
Number

Age
Class/Sex

Body Weight (kg) Body
length (cm)

Tail
Length
(cm)

Capture Date

M1 Adult % 50-55 (est) n/a 96 3 April 1982

M2 Subadult % 28 (1st capture) - 
37 (14 months 
later)

114 98 15 December
1982

M3 Subadult % 34 102 90 1 May 1983

F1 Adult & 39 113 96 23 March
1984

F2 Subadult & 21 96 89 30 April 1984

terrain and often dense shrub cover made sightings extremely difficult, and this female was

especially wary while her cubs were young.

Female F2 is the presumed daughter of F1 as they associated for three days, a month before 

she gave birth again.  The daughter's age at capture was estimated at 18 to 22 months.  

Thus, F2 was tracked over a time when she was apparently establishing her home range 

within that of her presumed mother.

Study Area Population: The sex and age composition of the study area's population is 

uncertain for not all individuals present were collared or observed and classified.  Sex

determination based upon pugmark size and shape can only reliably separate fully grown 

males, as subadult male tracks overlap in size with those of adult females.  Not only was 

sandy or fine soil scarce as a tracking medium in the study area, but differences in slope

steepness, soil depth and soil texture resulted in considerable variation with respect to track 

size, shape and detail, even for the same set of pugmarks made over a relatively short 

distance.  Even with the benefit of multivariate statistics and extremely large samples, it is

doubtful that snow leopard track sets could be reliably classified with respect to individual, 

sex or age class as suggested by Panwar (1979) for tiger and Smallwood and Fitzhugh 
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(1993) for puma. 

Based upon concurrent observations of radio-tagged animals, sign (pugmarks, scrapes and

scent-sprays), and visual sightings, the resident and transient snow leopard population of the

core study area numbered between five and possibly as many as 12 individuals, including 

F1's two cubs.  In early 1984, the population consisted of two young adult males (M2 and 

M3), a subadult female (F2) and at least one adult female (F1); tracks indicated three or 

four uncollared animals about the size of M2 and F1, as well as at least one larger and

apparently widely roaming adult male in the roughly 80-100 km2 area.  This amounted to an

adult snow leopard density in excess of 5 animals per 100 km2 or at one adult snow leopard 

per 20 km2.  If subadults and cubs are taken into account, the snow leopard density may 

have exceeded one animal per 10 km2.

Age of Independence, Reproduction and Mortality:  The age of independence in wild snow

leopards is not known.  However, snow leopard F2 was 18 to 22 months of age when she 

was captured, suggesting she had not been on her own for more than a few months.  F1 

was judged to be at least 4 years old when she gave birth to a litter of two (and possibly 

more) cubs in early June, 1984.  When field work was terminated in July 1985, both cubs 

were still travelling with their mother, and were fully dependent upon her for their food and

protection. Thus, the interval between births is at least 2 years, judging by this particular

individual.  The age at first breeding cannot be established, except to note that a female 

aged about 20 months at capture had not produced cubs a year later (at least judging by her

movement patterns), while a 40-45 month-old male (M2) may have attempted to breed with 

F1, judging by his frequent vocalizations and movement pattern.

Breeding appears to be strongly seasonal in wild snow leopards.  Mating vocalization or

"yowling" was recorded on 7 occasions, between the months of January and March.  

Yowling was more frequently heard in 1984, when F1 was in oestrus, suggesting that it 

helps mating pairs locate each another.  Both sexes yowled and these calls were audible 

over distances of at least 300 or 400 meters, even with the background sound of the Langu

River.  Most yowling occurred in the late evening (especially between 7-10 pm) and again

around midnight.  In one three hour bout, 25 yowls were heard, apparently made by an 

adult male (G. Ahlborn, pers. comm.).  In another instance, M2 yowled, followed by 

another individual shortly afterwards.  The incidence of yowling was greatest in late 

February, coinciding with increased marking activity (see Chapter 7). 
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All animals handled during the study had very low ectoparasite loads, and generally 

appeared to be in good health.  Mortality was not documented, except for instances of 

hunting preceding this study, when local villagers regularly killed snow leopards by placing

poisoned spears along trails frequented by them (Jackson 1979a).  The sale of pelts was

considered an important source of potential income for some hunters. 

4.3 Discussion

I gathered very little information on birth and survival rates, although with at least 12 snow

leopards (adults, subadults and cubs) within the approximately 100 km2 study area, the

Langu Valley clearly supports a very dense snow leopard population.  While surveys have 

been made in widely-separated parts of the snow leopard's enormous range, most are 

derived from incidental observation of tracks (spoor) and other sign, supplemented by

interviews with local residents  --  rather than from populations with known, marked (radio-

tagged) individuals; all such estimates should, therefore, be viewed cautiously.  Estimated 

snow leopard densities from other areas range from about 0.36 - 0.53 animals per 100 km2 

in the Taxkorgan Reserve of the Xinjiang Autonomous region in China (Schaller et al. 

1987), one snow leopard per 150 km2 in parts of central Ladakh (Mallon 1984), to as many 

as 4.3 animals per 100 km2 in the Manang area of the Annapurna Conservation Area of 

Nepal (Sherpa and Oli 1987).  Based upon a subsequent radio-telemetry study conducted in 

the same area, Oli (1994) revised his density estimate upward to 4.8 - 6.7 adult snow 

leopards per 100 km2.  Fox et al. (1991) placed the snow leopard density at between 0.4 - 

0.6 animals per 100 km2 in central Ladakh and the Kulu-Manali area to the south of the 

main Himalayan range.  Jackson et al. (1994a) estimated about 100 snow leopards inhabit 

the Qomolangma Nature Reserve of southern Tibet -- a crude density of about 0.3 per 100 

km2, with a few areas containing as many as 5 per 100 km2.  Judging by sign, Schaller et 

al. (1988b) estimated snow leopard densities at one per 25-35 km2 in four areas of Qinghai

Province, located near the northern edge of the Tibetan Plateau.  On average, he surmised 

the density at one cat per 100 km2 for this region.  In the more arid central portion of the 

Altai Range of Mongolia, Schaller et al. (1994) judged at least 10 snow leopards (including

large cubs) frequented one 275 km2 area surveyed, for a density of 
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3-4 cats per 100 km2.  Other nearby areas contained few or no snow leopards, while the 30 

or so snow leopards in the 44,190 km2 Great Gobi National Park (Sector "A") are restricted 

to a few isolated, small mountain massifs.  Differences in habitat quality, population

fragmentation and other factors greatly complicate comparisons between these climatically 

and topographically different areas (unpub. data).

Information accruing from this study is insufficient to establish reproductive and survival 

rates for wild snow leopards.  In captivity, snow leopards reach sexual maturity at 3 - 6 

years of age (Blomqvist and Sten 1982).  The age at first reproduction averaged 3.9 years 

in a sample of 42 captive females, but only 14% bred at 3 years of age (Blomqvist and Sten

1982).  According to these authors male snow leopard reach sexual maturity at about the 

same age as females.  Females continued to produce litters through 11 years of age, after 

which productivity declines markedly.  One female gave birth when she was about 18 years 

old, but this is clearly unusual.  The median interval between births was two years for wild-

caught and one year for captive-bred females in a sample analyzed by Rieger (1982). 

Seventy seven percent of 384 estrus periods in captive animals occurred between January 

and March (Blomqvist and Sten 1982), with a peak during February.  According to these

investigators the duration of oestrus ranged from 1-16 days, with an average of 5 or 6 days. 

Sadlier (1966) reported an average oestral duration of 6.2 days, Rieger (1980) 10-12 days 

and Kitchner et al. (1975) a range of 2 to 8 days.  This study supports late January through 

mid-March as the mating period (Ahlborn and Jackson 1988), based upon scent-marking

patterns, mating vocalizations and other social interactions.  Mallon (1982) reported that 

mating occurs in late March or April in Ladakh, a time during which local shepherds often 

hear the cats calling at night.  Schaller (1977) reported that mating occurs between February 

and early April in the Himalaya; these authors agree that most cubs are born in June and 

July, although Schaller felt that one cub he observed had probably been born in August.  In 

the Soviet Union, cubs are said to be borne between April and June (Andriuskevicius 1980).

By contrast, captive snow leopards are born between late March and early September, with

a peak in May (Blomqvist and Sten 1982; Rieger 1982; Freeman and Hutchins 1978).  

Litter size in captivity ranges from one to four cubs, with an average of 2.2 (Blomqvist and 

Sten 1982; Rieger 1982).  Litter size in wild populations range between 1-5 and average 2 

or 3, according to Novikov (1956), Stroganov (1962) and Schaller (1977).
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These observations are generally consistent with our observations on radio-tagged snow 

leopard F1 which gave birth to cubs around June 13-15.  She subsequently raised 2 cubs, 

but there could have been more at birth for her litter size could not be confirmed until 6 

months later.  Assuming a gestation period of 96-105 days (Jones 1973; Kitchner et al 

1975; Marma and Yunchis 1968), this female bred in early to mid-March.

No estimates of mortality rates are available, but these must be high in most parts of the 

cat's range, partly judging by lack of consistent sightings and hunting pressure from 

humans.  Like other felids, young and subadult snow leopards die as a result of disease,

inadequate nutrition, abandonment, or at the hands of man.  In Ladakh, cubs are 

occasionally taken from maternal dens or dispatched while with their mother at a livestock 

kill (Mallon 1984).  Reports of snow leopard being stoned to death in Ladakh (India) and

Baltistan (Pakistan) after entering livestock enclosures are not uncommon.  Elsewhere, snow

leopards are killed using rifles, pit-traps and possibly poisoned bait for their valuable pelt or 

in retribution for livestock depredation (Schaller 1988a & b; Jackson 1979b; Jackson et al.

1994b; Tan and Liao 1988; Nath 1982; Mallon 1984; Simon 1976; Rodenburg 1977).  One 

of the males in this study (M2) showed evidence of facial scratches, which could possibly 

have been the result of intraspecific aggression.  Aside from unnatural mortality (i.e. road 

kills, poaching), Maehr et al. (1991) consider aggression between males as the most 

common form of mortality in Florida puma.

Other than man, the only natural enemy of snow leopard appears to be other large 

carnivores, notably the wolf (Canis lupus) (Schaller, pers. comm.).  One cat in Ladakh

appropriated a kill from a pack of 4 wild-dogs (Cuon alpinus) by chasing them off it (Anon.

1993).  Snow leopards may also be killed in avalanches according to Mallon (1984), who

reported the demise of a female and her two cubs in Zanskar.  Occasionally, a snow 

leopard may misjudge its stalk and lose its footing on a cliff, falling to its death (Nath 

1982).  However, one instance of a snow leopard falling off a cliff that was relayed by 

villagers to Mallon (1984) may in fact have been suspect.  In captivity, mortality among 

cubs is generally attributed to stillbirths, mistreatment by the parent, pneumonia and 

enteritis (Marma and Junchis 1968; Freeman and Hutchins 1978; Wharton and Mainka 

1994).  Longevity among captive animals has increased since 1970 from a maximum of 13

years to about 17 years, in large part due to improved management.



Nepalese associate radio-tracking from the rolling alpine grasslands of Tillisha mountain - 1983

©  Rodney Jackson
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CHAPTER 5 MOVEMENT AND ACTIVITY PATTERNS

5.1 Radio-locations

The five tagged animals were relocated a total of 711 times using radio-telemetry.  Eighty-

two percent of the relocations were assigned to good and fair location classes (i.e. less than 

50 ha in extent).   The tracking frequency and interval for the five snow leopards which 

were fitted with radio-collars is shown in Table 7.  The number of locations per individual

ranged from 36 to 245.  On average, animals were relocated at intervals of 1.5 - 3.6 days, 

or 28 - 68% of time I or other team members spent in the field.  Not only was M1 tracked

before any other animal had been tagged, but its activity and movements were the least 

studied of all of the tagged snow leopards.  Leopards M2 and F1 were located most 

frequently.  Contact with F2 declined during the second year it was being monitored, 

possibly reflecting this female's efforts at consolidating her home area through increased

movement. 

Radio contact was lost with three of the tagged snow leopards (M1, M2 and M3) after 

periods of some 4, 18 and 10 months of monitoring respectively.  Signal contact with M1 

Table 7: Radio-location data for 5 snow leopards

Cat
No.

Number
of
Locations

Number
of Days
Located

Mean number of
consecutive days
between successive
locations

Percentage
of days
contacted

Time Period
Tracked
(month/year)

 M1  36  28 3.61 27.7 4/82 - 8/82

 M2 222 199 1.77 56.3 12/82 - 6/84

 M3  75  69 2.70 37.1 5/83 - 3/84

 F1 245 206 1.47 68.0 3/84 - 6/85

 F2 133 109 2.43 41.1 4/84 - 6/85

 Totals 711 611
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and M3 was abruptly lost, suggesting transmitter failure or the individual's sudden 

departure from the study area.  Large male pugmarks periodically seen after the failure of 

M1's transmitter could have been left by this or another fully-grown male.  Contact with 

M3 terminated after a period during which two similar-sized, tagged male snow leopards 

(M2 and M3) used a common area.  Facial scars and other wounds found on M2 when it 

was immobilized in early February of 1984 may have resulted from intraspecific contact 

with other males, including M3.  Fifteen days later, contact was lost with M3; this animal

appeared to be travelling more extensively at the time, and may have been forced out of the 

area by M2.  When last contacted, M3 was travelling in a northerly direction, toward the 

high mountain range that demarcates the study area's northern boundary.  Despite regular

attempts, contact was never re-established with any of these snow leopards.

Following several weeks of malfunctioning, M2's radio-transmitter was replaced on 14

February, 1984, some 14 months after it was first attached.  Normal transmission resumed 

and continued until late June, 1984 when inactive signal pulses were repeatedly obtained,

suggesting either death or the shedding of its radio-collar.  Triangulation placed the 

transmitter location in a high, U-shaped valley near the northern perimeter of the core study

area.  The entrance to the valley was blocked by a deep, inaccessible gorge, its perimeter 

by high cliffs or extremely steep and dangerous talus slopes.  Several attempts at visiting 

the collar site were thwarted by inclement weather, including deep snowfall; it was not until

nearly a year later that a successful search was mounted and the radio-collar was recovered 

on 10 June, 1985 at an elevation of 4,450 m.  It was lying 15 m downslope of a prominent

boulder, above a small rockfall and other lateral or terminal morainal debris, in alpine 

grassland and fell-fields near the confluence of the Mangar and Tillisha streams.  The collar

bolts were intact, but imbedded in bovid rumen material, while the transmitter box 

contained two long scratches that could have been made by a felid clawing at its surface.  

An intensive search of the area revealed no bones or body remains, although an old blue 

sheep kill was located under a large boulder in a rockfall 225 m below the radio-collar 

recovery site.  Evidently M2 shed its collar, but I can only speculate how this might have

happened.  One possibility is after M2 had successfully stalked and killed a fully grown 

male blue sheep and was dragging the carcass downslope to the rockfall noted above; 

during this process, the blue sheep's horn-tips could have become caught and locked 

beneath the radio-collar, thereby causing the snow leopard to claw and pull the radio-collar 

off over its head.  Had the cat died here, I would expected to find some evidence like hair, 
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skin or bones even if the site had been disturbed by vultures and other scavengers.  

Pugmarks of the same size class as M2 were regularly sighted after the transmitter failed,

indicating the continued presence of snow leopards of this size class in the study area.

5.2 Movements

There was no evidence to indicate that capture and radio-marking disrupted subsequent 

activity and movement patterns, for tagged animals regularly travelled through the area 

where they were captured (Sunquist 1981, Samuel and Fuller 1994).  In fact, M2 and M3 

were recaptured within several days, just meters away from their initial capture sites.  Snow

leopards were found in a different place on 72% of all consecutive days on which they were

located (N = 232, data from five leopards pooled).  Tagged snow leopards were located in 

a different grid square (6.25 ha) 64 - 74% of their locations, indicating that all radio-tagged

animals tended to choose a different resting site each day unless on a kill, or in the case of

females with newly born cubs, constrained to their maternal den-site. 

The mean minimum distance (straight-line) moved by a radio-tagged snow leopard between

consecutive daily locations ranged from 0.85 to 1.61 km (Table 8), excluding stationary

locations (i.e., when located at a known or presumed kill-site, or locations that were 

separated by distances of 200 m or less).  Males moved slightly farther than females, but 

the difference was not significant (Mann-Whitney U = 7547; P > 0.057).  The mean linear

distance moved was 1.12 km (N = 232), with considerable variation (ranging from 0.21 to 

6.72 km) between and among the different individuals.  Linear distance between consecutive

daily locations provides an index of daily movement, rather than actual distance moved, 

which typically involves a far greater distance.  Home range size was not significantly 

correlated with daily distances moved (Kruskal-Wallis ANOVA = 8.717, df 4, P < 

0.069).  Snow leopards moved significantly shorter distances after leaving a kill compared 

to pre-kill distances (before kill X– = 1.6 ± S.E. 0.24 km, N = 50; after kill X– = 0.9 ± 

S.E. 0.13 km, N = 58; Mann-Whitney U = 1869.0, df 1, P < 0.01).  No differences in 

distance between successive kill sites was detected with respect to either sex or season. 

Nearly 90% of consecutive day movements involved a distance of 2 km or less, and in 58% 

of the sample the distance moved was less than a kilometer (Table 8).  Frequency 
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Table 8: Linear distance (in kilometers) between locations of radio-tagged snow leopards on
consecutive days 

Cat No. Number of
Consecutive
day locations

Mean Distance
± SE (km)

Maximum
Distance 

Frequency Distribution 
(percent)

< 1.0 1.0 - < 
2.0 

$ 2.0

M1 12 1.61 ± 0.31 3.37 33.3 33.3 33.3

M2 68 1.31 ± 0.13 4.74 52.9 30.9 16.2

M3 19 0.95 ± 0.13 2.15 63.2 26.3 10.5

F1 88 1.09 ± 0.11 6.72 55.7 35.2  9.1

F2 45 0.85 ± 0.09 2.35 73.3 17.9  8.9

Males 99 1.27 ± 0.10 4.74 52.5 30.3 17.2

Females 133 1.01 ± 0.08 6.72 61.6 29.3  9.0

All cats 232 1.12 ± 0.06 6.72 57.8 29.7 12.5

Note: Stationery locations (< 200 m) are excluded

distributions indicated that 82.8% of male and 90.9% of female successive day movements

encompassed distances of two kilometers or less, hardly surprising given the rugged and

elevationally extreme terrain of the study area (Figure 1).  Only 3 and 2.25% of the male 

and female sample respectively involved consecutive-day straight-line distances in excess of 

4 km.  Nearly half of the sample involved consecutive day movements of 0.75 km or less.  

On average, males moved linear distances of 1.16 ± 0.40 km during the same day (N=13

locations; range 0.20 to 5.65 km), and females an average of 0.64 ± 0.10 km (N=27 

locations; range 0.22 to 2.25 km). No difference in same-day movements between sex was

detected (Mann-Whitney U = 803; p > 0.300).  The average day-time distance moved by 

a snow leopard of either sex was 0.81 ± S.E. 0.15 km (N=40).  

Snow leopard F1's movements were significantly reduced after she gave birth to a litter of 

at least two cubs on June 13-15, 1984.  During the first 4-5 days, she apparently did not 

wander from the den-site, presumably because she was regularly nursing.  On June 19 she
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Figure 4: Frequency distribution for distances moved between consecutive days for 5 snow leopards
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left the den for 1.5 days, possibly to hunt: during this time she was located in several 

different places, all within 400 m of her den-site.  She was at the maternal den again on 

June 21 and evidently remained there with her cubs until June 23.  F1 returned after 

spending a full day almost a kilometer to the south-east, where she may have been feeding 

upon a kill.  She stayed at the den for another 3 days, then travelled to another site 

slightly over a half kilometer away in the opposite direction.  The mean daily distance F1

moved during the 10 days prior to the birth and the 15 days following this event averaged 

0.66 ± S.E. 0.11 km (N = 14).  Due to the impending monsoon and associated logistical

constraints, I had to leave the study area at this point (June 30) and was therefore unable 

to determine at what age she first moved her cubs to a new den site.  When I returned 

five months later, F1 and her two cubs were changing their bedding sites daily.  Between 

ages 6 and 12 months, the mean daily linear distance travelled by the trio was 1.23 ± 

S.E. 0.17 km (n = 51), compared to a mean daily distance of 1.01 ± S.E. 0.09 (N = 

23) which F1 travelled prior to giving birth.  The differences in movement before, during 

and after births were marginally significant if compared among all groups (Kruskal-Wallis

ANOVA statistic = 5.408, df 2, P < 0.067); however, these differences were significant 

if natal movements were compared with those of the pre-birth period (Mann-Whitney U = 

236, P < 0.019) or the post-maternal denning period (Mann-Whitney U = 485, P < 

0.041). 

5.3 Activity Pattern

Percent activity and sampling effort for the 5 animals studied are shown in Table 9.  

These data include records in which activity is very localized, such as that occurring in 

bedding sites when an animal shifts its head or body position.  Sample size varies widely

between sex, individual and time interval (for example activity records totalled 13,830 

records for males (N = 3) compared to only 3,946 for females (N = 2); interpretation of 

activity data must therefore be made cautiously.  Activity by male radio-tagged snow 

leopards differed significantly between the four time intervals of day and night, with 

greater than expected activity during dawn and dusk and less than expected during daytime 

(P2 = 36.231; df 3; P > 0.001).  Female activity (P2 = 11.223; df 3; P > 0.005) 

differed for the dusk time period only, when they became more active.  
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Factors affecting Activity in Snow Leopards:  Individual behavioral differences among 

snow leopards (variable "catno"), with some being more active than others, contributed 

most significantly to variation in activity levels, as did the differing response of some

individuals to time of day and the time of year.

Time of day was found to be highly correlated with the activity pattern exhibited by snow

leopards of the Langu Valley, with activity levels differing according to the particular

individual, time of day and individual response to time of day respectively (Table 10 - 

Model I).  Activity differed with respect to individual and time of day for all snow 

leopards.  Fishers LSD test indicated that M2 differed significantly from the other three

individuals sampled, whose mean overall activity did not differ significantly.  Snow 

leopard F1 was most active, while M2 was the least active. Dawn hour (0500-0855 hrs) 

and dusk hour (1600-1900 hrs) activity levels differed significantly from the remaining 

daylight hours (0900-1555 hrs), but with less consistent differences from the night-time

intervals between 2000 - 0355 hours, thus confirming a crepuscular activity pattern in the

population sampled.  All individuals showed this basic pattern, although there was 

considerable variation between animals (Figure 5).  Figure 6 shows the probability of 

activity for male and female snow leopards, based on least square means.  Both figures 

indicate activity peaks during dawn (04:30 - 08:25 hrs) and dusk (16:00 - 19:55 hrs), with

reduced activity during the daytime (08:30 - 15:55 hrs) and nighttime (20:00 - 04:25 hrs)

periods.  It is not known why the two females showed so much more activity during the 

evening activity peak than the two males (Figure 6).

A similar crepuscular activity pattern is shown when daily activity is averaged over the 

entire year, with two peaks of activity (one around 0700 hrs and the other at 1800 hrs). 

Typically, snow leopards became active an hour or so before dawn, remaining active for 

5-6 hours, and then resting during the middle of the day.  Activity intensified again 

around 1500 h, with animals remaining active for several hours following darkness.  

Although activity varied greatly between individuals (Figure 6), all animals were generally 

most active around dawn and dusk. 

Activity differed according to month (Model II), although the diurnal differences were not 

as strong (Table 11) and in the case of one individual (F2) these were not significant.  In 

terms of daily activity, the crepuscular pattern is pattern is most pronounced during the
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Table 9: Activity of 5 snow leopards according to four time periods

Cat
No

Nighttime
(0200-0355 hrs)

Dawn
(0400-0755 hrs)

Daytime
(0800-1555 hrs)

Dusk
(1600-1955 hrs)

Percent
active

Sample
Size

Percent
active

Sample
Size

Percent
active

Sample
Size

Percent
active

Sample
Size

M1 55.1 377 77.9 261 35.3 721 73.9 485

M2 34.8 2,036 49.1 1,190 39.5 4,500 44.4 1,964

M3 52.5 654 62.5 379 51.4 1,458 54.5 741

F1 47.5 680 73.1 243 52.2 974 71.3 840

F2 58.2 270 44.6 196 48.8 514 49.6 368

%% 41.9 2,874 55.4 1,712 42.1 6,237 50.8 3,007

&& 50.6 919 60.1 429 51.0 1,427 64.6 1,171

All 44.1 3,793 56.4 2,141 43.8 7,664 54.7 7,178

Note: Sample Size = number of 30 minute intervals in the data subset.  Each 30 minute interval
consisted of up to 6 individual activity readings, taken at consecutive 5-minute periods; these 
figures were averaged to obtain the proportion of each interval in which the animal was 
considered to be active.

fall/winter and spring sampling periods; the increased day over dawn activity noted during 

the summer may have reflected the limited sampling effort of this time period, rather than 

a real pattern of snow leopard activity (Figure 7).  

Model III (Table 12) examined activity under the additional influence of time of year and 

time of day (according to 4 broad categories), indicating that time of year based on the 

three seasons was not significantly correlated with activity.  Sex was found to be highly

correlated with activity in snow leopards, along with time of day and interactions between 

sex, season and time interval (Model IV, Table 13).  This relationship involving sex, 

however, did not hold when examined in terms of month of year: F-values for this model 

(V) are shown in Table 14, suggesting the effect of sex is nested within individual snow

leopards and interaction between cat and month. 
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Table 10: Analysis of variation (MODEL I) in activity of snow leopards in the Langu 
Valley with respect to time of day and difference among individuals (1982 - 1985) 

Source of variation d.f MS F & Probability Level

Total 3646

 Catno (n = 4) 3 37.428 10.08     P = 0.0001

 Time Interval 1 23 12.436 3.35      P = 0.0001

  Cat x time interval 69 6.217 1.67      P = 0.0005

Residual 3551 3.713

Note:

1 Hourly time intervals, based on Standard Nepal Time

No significant differences were detected between activity levels during the mating and 

non-mating seasons for either individual (F = 1.55, df 1, P < 0.213) or sex (F = 1.12, 

df 1, P < 0.289), although overall activity levels in males were highest during March, the 

peak of the mating period.  However, female activity was lower during this month 

compared to other times of year.  This situation may possibly reflect a sexual difference, 

with males roaming widely in search of oestrous females and females being more 

sedentary during the mating period.  Interestingly, activity did not differ according to 

month in F2, a non-breeder. However, given the very small sample size, more research is 

clearly needed before valid conclusions can be made.

Presumably these patterns reflect differences among sampled snow leopards with respect 

to age, sex and other individual characteristics.   Overall, females tended to be more 

active than males (Least Square means & = 0.61; % = 0.49).  Some of this difference 

may have been due to M2's apparently less sensitive activity sensor, which was replaced 

in February 1984.  This could also explain why this individual was significantly less active  

than the other snow leopards' monitored; one would have expected this individual to be 

more active if it had been in the process of establishing itself as the dominant male, as I 

suspect may have been the case. 
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Table 11: Analysis of variation (MODEL II) in activity of snow leopards in the Langu 
Valley with respect to time of year (month) and difference among individuals (1982 - 
1985) 

Source of variation d.f MS F & Probability Level

Total 3646

 Catno (n = 4) 3 35.194 9.53     P = 0.0001

 Time of Year (month) 1 6 8.670 2.35     P = 0.0289

  Cat x month 16 21.492 5.82     P = 0.0001

Residual 3621 3.694

Note:

1 Model does not examine all months of the year (see methods)

5.4 Discussion

Movement Pattern:  The Langu Valley snow leopards were relatively mobile, changing 

their location from one day to the next, unless they were on a blue sheep or tahr kill.  

Given the strongly precipitous terrain within their respective home ranges, it is not 

surprising that these snow leopards moved straight-line distances of only a kilometer or so

between consecutive days.  Actual distances moved are greater than the telemetry data 

indicate, as pugmarks showed all cats typically traveled a circuitous, zig-zag route.  

However, no estimates of actual distances travelled were made, but movements in excess 

of 1.5 times the airline distance are likely, as observed in the puma studied by Sweanor 

(1990).  A snow leopard would occasionally move from one end of its range to the other 

within a 12- to 24-hour period, thereby covering a linear distance of 7 km. or more.

Daily movements of a kilometer or less in snow leopard were also reported by Chundawat

(1990a) who monitored a radio-collared male over a 35 day interval in late winter in the  

Hemis National Park of Ladakh.  In Mongolia, Schaller et al. (1994) noted that a male 
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Figure 5: Probability of activity according to 30 minute intervals for 5 snow leopards
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Figure 6: Probability of activity for male and female snow leopards
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Table 12: Analysis of variation (MODEL III) in activity of snow leopards in the Langu 
Valley with respect to time of year (season), time of day (interval), and differences among individuals (1982 - 1985)

Figure 7: Probability of activity in snow leopards according to three seasons
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Source of variation d.f MS F Value & Probability

Total 3646

 Catno (n = 4) 3 6.5562 27.98    P = 0.0001

 Season 1 2 0.0872 0.37     P = 0.6894

 Time Interval 2 3 1.9257 8.22     P = 0.0001

  cat x time interval 9 0.5533 2.36     P = 0.0118

  cat x season 6 1.4627 6.24     P = 0.0001

  season x time interval 6 0.7032 3.00     P = 0.0063

  cat x season x time interval 18 1.0365 4.42     P = 0.0001

Residual 3599 0.2343

Note:

1 Seasons sampled are fall/winter (November - February); spring (March - May 15); 
and summer (May 16 - July)

2 Time intervals sampled are night (20:00 - 04:25 hours Standard Nepal Time); dawn 
(04:30 - 08:25 hrs); day (08:30 - 15:55 hrs); and dusk (16:00 - 19:55 hrs)

remained within an area of 12 km2 during the 41 days it was radio-tracked, and repeatedly

 used a favoured daytime resting site.  Oli (pers. comm.) determined similar mean daily

distances for 3 snow leopards he tracked in the Annapurna region of Nepal, an area

 comprised of considerably less rugged terrain than the Langu Valley.

Tigers, jaguar and puma, for example, were found to travel linear distances about twice as

 much (Schaller and Crawshaw 1980, Seidensticker et al. 1973, Sunquist 1981).  Norton 

and Henley (1987) reported that common leopards moved mean daily distances of 2.3 to

 4.2 km, observing that they also rested in different places each day.  Common leopards in

 the Kruger National Park were stationary on only 5% of all consecutive days monitored

 (Bailey 1993).  The average distance between daily locations of Bailey's radio-collared

leopards was 1.7 km/day, with 40% of all locations being less than 1 km apart; these 

Table 13: Analysis of variation (MODEL IV) in the activity of snow leopards according to 
time of year (season), time of day (interval), and differences between sexes (1982 - 1985) 
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Source of variation d.f MS F Value & Probability

Total 4059

 Sex 1 8.9301 37.07     P = 0.0001

 Season 1 3 0.1191 0.49      P = 0.6099

 Time Interval 2 2 4.5325 18.82     P = 0.0001

  sex x time interval 3 0.3290 1.37      P = 0.2313

  sex x season 2 1.7189 7.14      P = 0.0008

  season x time interval 6 0.5199 2.16      P = 0.0441

  sex x season x time interval 6 1.5096 6.27      P = 0.0001

Residual 4036 0.2409

Note:

1 Seasons sampled are fall/winter (November - February); spring (March - May 15); and
summer (May 16 - July)

2 Time intervals sampled are night (20:00 - 04:25 hours Standard Nepal Time); dawn 
(04:30 - 08:25 hrs); day (08:30 - 15:55 hrs); and dusk (16:00 - 19:55 hrs)

adult males moved 1.9 times further than adult females.  Mean daily distance moved was 

not significantly correlated with snow leopard home range size, as Hamilton (1976) found 

in the case of common leopard in  Kenya.  Not surprisingly, movement in one female 

with immobile cubs was significantly less than that recorded prior to birth, or before the 

cubs had attained six months of age.  Bailey (1993) speculated that home range patrolling 

and maintenance, along with the location of mates were the main factors explaining the 

greater daily movements of males. 

No seasonal differences in the daily movement rates of snow leopard were detected.  In

common leopard, Bailey (1993) found that adult females travelled significantly greater

distances between successive days during the peak breeding period (July through 

September) than at other times of the year.  The average daily distance travelled by adult 
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Table 14: Analysis of variation (MODEL V) in activity of snow leopards in the Langu 
Valley with respect to time of year (month), sex and individual, with nested effects due to 
sex, cat number and month. 

Source of variation d.f MS F Value &
Probability

Total 3646

 Sex 1 3.100 0.84 P = 0.3597

 Month 1 6 8.568 2.32 P = 0.0308

  month x sex 6 11.067 3.00  P = 0.0064

  cat (nested by sex) 2 25.705 6.96  P = 0.0010

  cat x month (nested by sex) 10 25.107 6.806  P = 0.0001

Residual  3621 3.694 3.00  P = 0.0063

Note:

1 Model does not examine all months of the year (see methods)

males did not increase significantly between nonbreeding and breeding periods.  Female

leopards moved 50% further during the breeding season.  Females with cubs moved

significantly shorter distances each day than females without cubs: three females without 

cubs averaged 1.9 km/day compared to 1.2 km/day for 3 females with cubs.  The  

distance moved decreased from 1.4 km/day to 1.1 km/day after parturition, with 

movement being most restricted during the first six months after birth.  One common 

leopard female monitored by Bailey remained within an area of only 12.3 km2 near the 

kopjie (rocky outcrop) that concealed her cubs for the eleven-month period that she was

monitored.   Bailey also found that female leopards raising young typically sought the 

secluded cover of rocky outcrops or riparian reed-beds.

Radio-telemetry indicated that snow leopards preferred to bed on or near ridgelines, cliffs 

or other sites with a good vista (see Chapter 9).  The species preference for travelling 

along a prominent terrain features or edge has been documented in other areas (Koshkarev

1984; Mallon 1984; unpub. data).  While snow leopards often select a prominent feature 

as a resting place, such as a large rock outcropping or ridgeline promontory, they seem to 
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prefer its base rather than lying in an well-exposed position on top.   Promontories 

provide shade as well as a close-by vantage point from which the animal could survey the

immediate area once it had become active again.  The base of rock outcrops used as 

resting sites are usually well-marked with scrapes and scats.  The Langu snow leopards 

also rested under low juniper bushes or along the edge of a low rock outcropping, but no

instances of tree-climbing, as reported from the Ala-Tau region of Kyrgyzstan, was 

recorded.  Here Guggisberg (1975), citing Stroganov (1962), noted that snow leopards 

rested in the nests built by black vultures in low junipers.  The large amount of shed fur

suggested that this was a regular habit of the snow leopards in this area, but this behaviour 

has not been observed elsewhere.  In India, Dang (1967) reported that snow leopards 

spent the daytime lying in rocky lairs, and other resting sites include rocky caverns, 

crevices or overhangs (Heptner and Sludskii 1992; Schaller 1977). 

The Langu snow leopards tended to travel a shorter distance after leaving a kill than they 

did beforehand.  By contrast, adult male common leopards moved significantly greater

distances after leaving a kill compared to pre-kill distances (1.5 compared to 4.7 km/day)

(Bailey 1993).  This investigator found that consecutive kills of adult male leopards were 

farther apart than those of other leopards, with dry seasons kills being most widely 

separated.  He suggested that the daily movements of leopards were influenced by prey

abundance, with greater movement occurring in prey-poor areas.  This relationship could 

not be examined in this study, since the entire study area offered prey-rich habitat for the 

snow leopards.  However, I would expect average daily movements to be significantly 

greater in areas where ungulate density is less than 1-4 animals per square kilometer; 

hopefully studies underway in Mongolia will provide comparative data on snow leopard

movements in prey sparse habitat (T. McCarthy, pers. comm.).

No information was gathered on dispersal movement, and none of the snow leopards 

monitored showed exploratory movements of the type documented by Bailey (1993) or

Sunquist (1983) for the common leopard.   However, I cannot exclude the possibility that 

M3 left the study area for a new home range elsewhere.  Bailey's data (1993) indicates 

that some common leopards did not disperse from their natal range until they are about 3 

years of age.  The availability of resources and competition with resident leopards are the

primary factors influencing the variability in age of dispersing leopards in South Africa. 

Animals are more likely to remain in the vicinity of their natal range in the absence of 



71

competing resident adults, and as noted, land tenure in the Langu Valley may have been in 

a state of flux, with no evidence to indicate frequent visitation by a fully grown male snow

leopard to the core use area.  

Activity pattern:  Although my sample size is clearly very limited, two basic patterns 

emerge: (1) snow leopard activity is primarily crepuscular, but with considerable variation

between individuals and within an individual, from one day to the next; (2) snow leopards 

tend to spend the middle of the day and night bedded on cliffs, in rocky outcrops or other

secluded and protected places.

Studies of captive snow leopards indicate that they are most active early in the morning 

and again in the evening at nightfall, with only short activity phases during other hours of

daylight (Hemmer 1968; Freeman 1975).  In the wild, recent work (Oli, in prep; Schaller 

et al. 1994) confirms this crepuscular activity pattern, contrary to the popular and 

scientific literature which portrays the species as being strongly nocturnal in its activity.  

The Langu snow leopards were most active after dawn and around dusk, but occasionally

moved around during the middle of the day as well.  The extent of daytime movement 

seems to be partially related to ambient temperature and whether an animal is on a kill or 

not: mid-day activity movement is more likely to occur on cloudy days or in animals that 

had not recently killed.   Radio-tagged snow leopards were most inactive at night between 

the hours of 10 pm and 3 am.  Their activity pattern appears to be adapted to that of their

principal prey species for blue sheep show a strongly diurnal activity with early morning 

and late afternoon activity peaks (unpublished data).  At night, blue sheep move to cliffs 

and other steep places to bed down for the night. Presumably snow leopards are more 

likely to make kills in or close to such terrain (see Chapter 8).

Oli (in prep.) monitored 3 radio-collared snow leopards in the Annapurna Conservation 

Area in Nepal for a two-month period during winter and found they exhibited a 

crepuscular activity pattern.  Overall, activity averaged 43.5%, with the highest peak 

(60.3%) occurring during dusk (16:00 - 19:55 hours) and the lowest activity during the

nighttime.  Animals were more active during dusk and less active than expected during the

night.  Schaller et al. (1994) reported that a male snow leopard studied in the Altay 

Mountains of Mongolia was crepuscular.  Over a three-day period in early December, he

remained active for about 53% of the time.  Similar activity levels were observed in the 
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Langu snow leopards.  Typically, a snow leopard remained resting in a small area for 

several hours or even several days, occasionally shifting its body position.  If not on a kill 

or if a week or more has passed since the last kill, a snow leopard is more likely to 

exhibit higher levels of movement, frequently shifting from one part of its range to 

another. 

As noted, many authors consider snow leopards to be primarily nocturnal in their activity

(Novikov 1962; Mallon 1984; Roberts 1977).  Novikov, for example, wrote that snow 

leopards in the former Soviet Union were most active at twilight and at night, although 

they were occasionally to be seen moving about during the daytime.  Mallon (1984) 

reported the same situation in Ladakh.  I suspect that the species is relatively inactive 

during daytime where disturbed, but even then it can be seen on kills (Fox and Chundawat

1988).  Snow leopards appear to be far more willing to travel by day in those areas little 

visited by either people or livestock.  For example, Dang (1967) reported midday activity 

in the secluded Nanda Devi sanctuary in India.  However, daylight movement can easily 

pass unseen, thanks to the snow leopard's excellent cryptic camouflage and its tendency of

moving quietly away, unseen upon the arrival of any humans.  It is reasonable to conclude 

that snow leopards are able to adjust their behaviour in response to the type of disturbance 

and level of threat they encounter.  Mallon (1984) felt that the nocturnal habits of snow 

leopard in Ladakh resulted from their tendency to subsist upon domestic livestock, thus 

leading to hunting and other forms of retribution.  Snow leopard sightings in Ladakh have

increased in recent years, possibly attributable to the increased emphasis upon wildlife

conservation, and resulting protection of wild ungulates like blue sheep and ibex.  Also, a

decreased dependence upon animal husbandry as an income source may be another factor 

in this apparent trend.  

Crepuscular activity has been reported in puma as well (e.g., Seidensticker et al. 1973; 

Sweanor 1990).  Sunquist (1981) found tigers in Chitwan to be more active by night 

(92%) than day (42%), presumably an adaptation to the higher ambient temperatures of 

tiger habitat.  This diurnal difference is even more marked in common leopard inhabiting 

the same area: nighttime activity averaged 74 percent versus only 12 percent during the 

daylight hours.  Hamilton (1976) found common leopards to be three times as active 

during the nighttime as daytime.  Bailey (1993) noted a similar pattern in the southern 

African population he studied, with male leopards being more active than female leopards
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during the night; while age did not significantly influence the activity pattern, females with 

cubs tended to be more active during night than females without cubs.  Daytime activity 

was found to be greater during the wet season than the dry season.  Seasonal variations in

temperature, cloud cover, precipitation and wind velocity had little influence on activity

patterns, although daytime movements tended to increase on overcast days.  Although the

influence of weather on snow leopard activity could not be easily studied because of its

variability across short distances, the Langu cats remained active longer on overcast days 

than on days with more solar insolation.  There appeared to be a tendency for snow 

leopards to rest earlier or longer on hot days compared to cold or cool days; however, 

animals could easily seek relief from heat by resting along windy ridge-tops or among 

shaded rocks.  This option is not as easily available to the tiger or common leopard, both 

of which reside primarily in the tropics.

This study found no significant difference in activity level between the seasons, although

activity rates varied according to month of the year.  However, these patterns appear to 

have been masked by variation between individuals and a small sample size, so that it is 

not easy to determine if overall activity levels increase during the mating season, or are 

higher in winter than summer.  Studies have indicated distinct seasonal patterns exist in 

tiger (Sunquist 1981) and common leopard (Bailey 1993), which appear to be related both 

to ambient temperature and prey availability.  Bailey (1993) concluded that seasonal 

differences in leopard activity patterns may be related to vegetative cover and the activity

patterns of impala (Aepyceros melampus).  Seidensticker et al. (1973) observed that puma 

in Idaho increased their daytime activity in summer in apparent response to the diurnal 

activity of ground-squirrels, a key food item of this time of year.  Similar shifts may 

occur in snow leopard for some populations rely heavily upon marmot during summer 

months.
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CHAPTER 6 HOME RANGE CONFIGURATION AND UTILIZATION PATTERNS

6.1 Home Range Size and Configuration

Cumulative minimum area polygon curves indicated that initial asymptotes were reached 

after animals had been located once every 2-4 days over a period of at least 40 to 65 days

(Figure 8).  Home-range size continued to periodically increase in individuals monitored for

time intervals in excess of 280 days.  This trend is attributed to the difficulty of sampling 

each individual's home area, given the rugged mountainous terrain and reliance upon 

ground-based radio-tracking.  The radio-tagged snow leopards tended to be fairly widely

dispersed, and capable of moving rapidly from one part of their home range to another.  

The long-term increase in the home area utilized by M2, M3 and F2 may have resulted 

from their youthful age, because each appeared to be in the process of establishing its 

respective home area.  Periodic increases in F1's home range after 180 days of monitoring 

may be related to the increasing food demands of her two young cubs.  Her home range

increased about 44% in area after 197 days of relocation, 38% after day 239 and a further 

60% after 292 days of monitoring (Figure 8).  Radio-telemetry indicated the cubs were born 

in mid-June, 1984, after F1 had been located on almost 100 separate days.  Their estimated 

ages at the 197, 239 and 292 day intervals were 8, 9 and 12 months respectively.   She 

probably had to travel more widely in her effort to secure sufficient prey for herself and her

offspring, in order to maintain hunting success while accompanied by untrained cubs.

Minimum area polygons for the 5 radio-tagged snow leopards are shown in Figure 9, and 

these suggest considerable overlap between individuals of the same and different sex.  The

minimum area polygons were several times longer than wide, reflecting local 

physiography -- a deep river gorge bounded by precipitous, rocky ridges and peaks 

exceeding 5,100 m in elevation.  None of the animals monitored were observed south of the

Langu River, which appeared to constitute the southern home range boundary for all tagged

individuals.  During mid-winter, when flows were at the annual low, a snow leopard could

easily have crossed in several places, simply by jumping across a series of boulders.  The 

tagged animals may occasionally have ventured across the 5,150 m range bordering the 

northern part of the study area, but this was not confirmed.
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Figure 8: Cumulative area curves for home ranges of 5 snow leopards
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Figure 9: Minimum Area Polygons for 5 Snow Leopards
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Home range size varied from about 11 to 36 km2 according to the minimum area polygon

method (Table 15).  However, these estimates do not account for the considerable 

topographic relief present within the study area, which could increase surface area by as 

much as 20-25 percent.  Limited access to key parts of the study area precluded effective

tracking of the first snow leopard tagged (M1), and as a result its home area is significantly

under-estimated.  The construction of three cable bridges in December 1982 enabled us to 

cross the Langu River after the spring snow-melt, and we were subsequently better able to

monitor leopard movements.  Home range size may also have been greater in M3, which 

was tracked over two successive seasons, during a time that it entered adulthood and 

appeared to be attempting to establishing its own home area.  

Home range size depends upon the computation method utilized.  Home range estimates 

using five different techniques commonly cited in the literature are shown in Table 16.  The

concave polygon technique (Clutton-Brock et al. 1982) provided the lowest areal estimate,

while the Fourier transform method (Anderson 1982) produced the largest estimates for 

home range size.  These data indicate home areas ranging from 11 km2 to more than 179 

km2.  Each method has its own advantages and disadvantages, and except for the concave

polygon and the Fourier transform, all appear to offer reasonable estimates for the area 

utilized by the five tagged snow leopards investigated.  The minimum convex polygon 

method is extremely sensitive to outliers, and may include little used areas within the 

designated home range limits (Ackerman et al. 1990).  By contrast, the concave polygon

technique may exclude used areas from consideration, and its algorithm is difficult to apply

unambiguously.  The Fourier transform and harmonic mean measure represent 

nonparametric estimation techniques based on utilization distributions, but home range

estimates derived from small samples have a strong tendency for bias.  In view of the 

difficulty of establishing a limit to the "real world", Anderson (1982) recommended that the

50% utilization distribution be afforded priority over the 95 percent distribution for 

estimating home ranges with the Fourier transform technique.

Areal projections using the Anderson fourier transformation and Dixon-Chapman harmonic

mean measure 95% activity isopleth were large and encompassed unused habitat located to 

the south of the Langu River.  As indicated below, estimates based on lower valued 

isopleths (30 - 56%) appeared to more reasonably reflect areas actually utilized.
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Table 15: Home range sizes of 5 snow leopards in the Langu Valley, based on the
minimum area method of Mohr (1947)

Cat No Minimum
Area (km2)

Length (km) Width (km) Length /
width
Ratio

No of
Locations

M1 11.07 8.4 1.8 4.66 34

M2 20.58 7.5 4.4 1.70 152

M3 10.66 6.0 2.7 2.22 52

F1 36.23 10.4 4.6 2.26 168

F2 18.60 8.3 2.5 3.32 101

Mean ±
standard
error

19.4 ± 4.64 8.1 ± 0.71 3.2 ± 0.55 2.8 ± 0.53

6.2 Core Area and Home Utilization Patterns

Expected Poisson distribution frequencies were computed for snow leopards' M2, M3, F1, 

and F2, using 6.25 ha square grid cells (i.e. 250 x 250 m grid size).  The spatial 

distribution of utilized grids differed significantly (P < 0.0001) from an expected random

distribution, indicating a strongly clumped spatial pattern.  These four cats used a total of 

208 grid cells (Table 17); males and females shared 47 or 22.6% of these cells.  The shared 

grid cells contained 39% of all male locations and nearly 52% of all female locations,

suggesting heavy use of common areas by snow leopards of either sex.

Harmonic mean distance utilization distributions for these 4 snow leopards (M2, M3, F1 

and F2), based upon the entire period that each was monitored, are graphically depicted in

Figures 10 to 13.  These include the statistically significant "core area", the 30 percentile

harmonic contour, the harmonic activity center, and the arithmetic center of activity for 

each individual.  Small sample size precluded inclusion of M1 in the analysis, and instead 

this individual's home use is depicted using the 100% minimum area polygon and the 

arithmetic center of activity (Figure 14).

Table 16: Size of yearly total home ranges (in square kilometers) as determined by 5
different home range estimation techniques
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Cat
No

No of
Locations

Percent
Convex
Polygon
(100%) (1)

Concave
Polygon(2)

Weighted 
Bivariate
Ellipse 95% (3)

Anderson
Transform.(4)

Dixon
Harmonic
Mean (95%)(5)

M1 26 11.07 1.98 18.23 n.a. n.a.

M2 152 20.58 11.66 16.39 100.72 42.86

M3 52 10.66 3.83 7.82 46.31 18.07

F1 168 36.23 12.97 16.44 179.94 65.06

F2 101 18.60 9.22 28.61 93.03 20.59

Mean ± S.E. 19.42 ± 
4.64

7.93 ±
2.16

17.49 ± 
7.42

105.00 ±
27.72

36.65 ± 
10.99

n.a. = sample size too small for estimation; S.E. = standard error. 
(1) Bowen (1982); Samuel and Garton (1985)
(2) Clutton - Brock et al. (1982)
(3) Gipson and Sealander (1972); Jennich and Turner (1969)
(4) Fourier transform utilization distribution (Anderson 1982)
(5) Harmonic Mean Measure, 95% isopleth (Dixon and Chapman 1980).
The Concave Polygon and Fourier Utilization was estimated using McPaal, version 1.1 
(Smithsonian Institution, Washington DC); the 100 Percent Convex Polygon, 95% Weighted
Bivariate Normal Ellipse and Harmonic Measure was calculated using Home Range (Ackerman 
et al. 1990, University of Idaho, Moscow)

The activity contour plots indicated that relatively large numbers of locations were 

concentrated within a relatively small part of the home range, denoting high intensity of use

within the center of activity (Figures 10 - 13).  Harmonic mean centers of all four snow 

leopards were located within several kilometers of each other.  The 95% and 75% activity

isopleths approached circularity in all animals, and enclosed relatively large areas of unused

habitat, especially to the south of the Langu river.  Core use was more convincingly 

modelled using the core area polygon (herein termed the significant core area) automatically

generated by the home range program and based upon the chi-square goodness of fit test.  It 

is defined as the maximum area where the observed utilization distribution, based on 

harmonic values, exceeded a uniform utilization distribution (Ackerman at al. 1990).  By

contrast, the 30 percent isopleth best denoted "central areas of consistent and intense use" 
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FIGURE 10: Harmonic Contours for M2
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FIGURE 11: Harmonic Contours for M3
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FIGURE 12: Harmonic Contours for F1
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(termed inner core areas).  Inner core use areas also overlapped between individuals and 

across sex (Figure 15).  The harmonic mean activity centers of the 4 snow leopards were 

located within 2 kilometers of each other, near the confluence of the Tillisha gorge with the

Langu River, in an area of abundant snow leopard sign and a relatively high prey 

population (see Chapter 10).  Male core areas tended to be located in areas west of the 

Tillisha - Langu confluence, while the two females tended to use areas more to the east.

The significant harmonic mean distribution ranged from 56.1 to 66.8 percent of the 

utilization volume (Table 18); thus, the statistically significant core areas ranged in size 

from 6 km2 in M3 to 20 km2 in F1.  While core areas comprised between 26 and 37% of 

the total home range area, they contained 68 to 93 percent of all locations tallied.  The 

figure in the last column of Table 18 provides a measure of the intensity of use within the 

core area of each snow leopard: these indicate M2, M3 and F1 were using their core areas 

most intensively.  Utilization volumes based upon the 30% isopleth designated smaller 

internal, but comparatively more intensively utilized activity centers (Table 19).  A 

relatively high percent of home range use (47 - 55%) occurred in the 30% isopleth core 

area, which encompassed only 6 - 15% of the animal's total home range area.  F2 used her 

core area to the least degree with F1 showing the highest intensity of use.  This may have 

been related to F1's natal den-site, which was located on a precipitous ridge overlooking the

Tillisha gorge (Figure 12), very close to the harmonic activity center.  The intensity of use 

ratio was several times greater for the inner core area compared to the larger significant 

core area.  Furthermore, these areas overlapped greatly between different individuals, 

although their use of the core area polygon was temporally separated (see Chapter 8).  The 

area of the combined, overlapping core area totalled 4.61 km2, and encompassed the slopes

around a major stream confluence formed by the Langu River and Tillisha Stream (Figure 

15).  The data indicated that 40 - 73 percent of locations were situated within the common

(overlapping) inner core area, which comprised between 6 and 23 percent of the particular

individual's total home range (Table 20).

Shifts between successive years in the use of the core area were detected in 3 of the 4 snow

leopards studied.  M2's center shifted 1.7 km southwest, F1's center about 1.1 in the same

compass direction, and F2's center about 3.8 km to the southeast.  The shift in the core 

activity area of F2 may reflect her attempt at establishing a home area within that of her

presumed mother (F1), by concentrating her activity in areas less heavily utilized by F1. 
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FIGURE 15: Inner Core Area Isopleths (30 percent) for 4 Snow Leopards
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Table 17:  Spatial distribution in 4 snow leopards based on grid cell method

Cat No Number of locations Number of grids used

M2 152 102

M3 53 37

F1 168 101

F2 98 66

Males 205 116

Females 266 139

All cats 471 208

Grid size = 6.25 ha (0.25 X 0.25 km2)

However, these shifts may have partly resulted from bias introduced by small sample size 

and use of an algorithm contained in an earlier version of the program used to compute

harmonic means (see Chapter 3, Home Range Size and Spatial Utilization). 
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6.3 Discussion

Given a secretive behavior and the difficulty of making observations, it is hardly 

surprisingly that home range size, land tenure and movements in snow leopard remained

essentially unknown until some animals could be radio-tagged (Jackson and Ahlborn 1989). 

Relying upon ephemeral pugmarks, Schaller (1977) was only able to conclude that the snow

leopard's home range size was unknown, but it had to be quite large given the long 

intervals between visits of animals to a particular valley.  This view was also held by

Guggisberg (1975) who stated that snow leopards "have vast territories, within which they 

move about a great deal, covering long distances in the process."  Citing Schaposchnikov

(1956), Hemmer (1972) concluded: "Obviously, individuals have expanded hunting grounds

through which they roam regularly in the course of about one week."  Dang (1967) 

reported that snow leopard had regular beats and ranges, returning regularly to fixed abodes

such as sheltered overhangs or caves.

To date, this is the only study that has monitored snow leopards for more than a few 

months.  Sweanor (1990) found that at least 35 locations over a 10-month period were

necessary to adequately measure home range size in resident male and female puma.  The

estimation of snow leopard home range size required a similar effort.  My study 

demonstrates that snow leopards may occupy remarkably small home ranges in areas with a

prolific wild prey base.  Elsewhere, snow leopard ranges appear of comparable size, 

although none of the other three studies conducted to date have monitored animals for 

longer than three months.  Chundawat (1990a) radio-tracked a single adult male snow 

leopard for 70 days during late winter in the Hemis National Park of north-western India, 

and estimated its home range at about 19 km2.  In Mongolia, Schaller et al. (1994) reported 

that a radio-tagged male remained within a 12 km2 area during most of the 41 days it was

tracked.  In the Annapurna Conservation Area of Nepal Oli (in prep.) found that home 

range size ranged between 13.9 and 22.3 km2, and averaged 19.1 km2, for the three cats (2 

&&; 1 %) monitored in winter and early spring.  However, samples based on short-term

monitoring tend to under-estimate total home range size, as indicated by the cumulative area

curve shown in Figure 8.  At least two of these studies (Oli and Schaller) were conducted in

relatively favorable snow leopard habitat, with fairly dense large ungulate populations.  

Larger home ranges than these are anticipated in snow leopards inhabiting marginal habitat 
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sparse in prey, areas with heavy winter snowfall, or places subject to summer livestock 

grazing and associated human disturbance.

The snow leopard home ranges were similar in size to those reported for common leopard 

from different areas of Africa (Bailey 1992; Hamilton 1976; Smith 1978), but smaller than 

the 40-49 km2 adult male home ranges reported for African leopards in a mountainous area

(Norton and Henley 1987) and larger than common leopard home ranges in Asia 

(Seidensticker et al. 1990; Eisenberg and Lockhart 1972).  Home ranges of male leopards 

in South Africa varied between 16 and 96 km2, and were much larger than the female 

ranges (6 - 30 km2) (Bailey 1993).  By contrast, puma range over an area exceeding 60 km2
 

in females to well over 450 km2
 for males (Anderson 1983, Hemker et al. 1984, Hopkins et 

al. 1986, Maehr et al. 1991; Neal et al. 1987; Seidensticker et al. 1973), with relatively 

smaller ranges in puma that do not migrate seasonally (Sweanor 1990).  Male puma ranges 

are typically two to three times larger than those of females; both sexes migrate between

summer and winter ranges in those areas experiencing deep winter snowfall, such as Idaho

(Seidensticker et al. 1973) or Wyoming (Logan et al. 1986).  

A quick review of the literature clearly substantiates the wide variability in home range size 

in a species such as the puma; the same may well apply to snow leopard, which also lives

primarily in mountainous habitats.  Home range size may vary depending upon the stage of 

an animal's reproductive life cycle.  Thus, the home range of snow leopard F1 increased 

after her cubs were 8 months age and more mobile, a trend also reported in puma (Sweanor

1990).  Bailey (1993) noted that female common leopard ranges changed with their own age

and the mobility of their cubs.  His study population did not maintain distinct seasonal 

ranges, although home range size and activity radii changed between seasons, apparently in

response to prey population density and availability.  Overall, female ranges tend to be 

more stable than those of males, at least in tiger and puma (Smith 1984; Sunquist 1981;

Sweanor 1990).  As noted in the discussion section of Chapter 8, male ranges sow varying

degrees of temporal change due to the death of a resident male, the arrival of a new male, 

or the pressure exerted by a more aggressive individual. 

Anderson et al. (1992) concluded that puma home ranges were more accurately sampled 

with the harmonic mean estimator, especially when compared to the minimum convex 

polygon method.  My analyses suggest that estimates based on the harmonic measure 
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resulted in somewhat larger home ranges for snow leopard; presumably, this reflects the 

linear nature of snow leopard home ranges in the Langu Valley.  Here, snow leopards were

found to occupy home ranges of 11 - 37 km2 using the minimum area polygon method or 

9 - 29 km2 using the 75% harmonic mean utilization isopleth.  These figures should be 

taken as approximations only, since they are strongly influenced by factors such as the

estimation technique employed, sample size and autocorrelation between locations.  Swihart 

and Swade (1985b) found that positive autocorrelation resulted in the underestimation of 

home range size.  Although I collected only one locational observation every 24 hours for 

each animal as recommended by these investigators, autocorrelation proved to be a 

persistent problem, at least statistically.  The statistical algorithm employed by Ackerman et 

al. (1990) detected autocorrelation even when locations were separated by a week or more,

apparently reflecting the snow leopard's proclivity for intensively utilizing a small area for a

week or more before shifting to another focal place.  Harris et al. (1990) concluded that the

biological and logistical considerations which result in autocorrelated data do not necessarily

bias home range estimates derived using the harmonic mean isopleth method.  Since a 

majority of locations in my study were taken during daylight hours, these home ranges may 

not adequately portray the area used during hours of darkness.  This bias is partly offset by 

the fact that snow leopards are quite inactive during much of the night, being more active 

near dawn or dusk, when their locations could be more easily fixed.  Snow leopards usually

spent more than half of their time in or around their day-time beds.

No indication of distinct seasonal ranges was detected in this snow leopard population 

(Jackson and Ahlborn 1989).  Although little or no monitoring was undertaken between the

months of July and November, other factors suggest there is little need for animals to 

change areas seasonally.  Snow accumulation is not a significant constraint, given the

predominantly south-facing aspect of the Langu Valley and rain-shadow effect from the

adjacent Kanjiroba Range.  Seasonal prey movements are limited to a narrow elevational

corridor, with no evidence for any long-distance or intra-valley movement.  There are no 

people or livestock to force snow leopards or wild ungulates into higher, more remote 

regions, which typically occurs when livestock are being grazed on alpine pastures during 

the summer (Roberts 1977; Mallon 1984).  Seasonal elevational movements have been 

reported in snow leopard populations in Pakistan, India and Krygystan (Roberts 1977;

Koshkarev 1989). 
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No evidence was found to indicate that snow leopards patrolled their home-range boundary

(Jackson and Ahlborn 1989).  Resident animals visited most portions of their range at 

intervals of several days to two weeks or more; on rare occasions, they crossed their entire 

home area within a 24-hour period, while at other times they remained within tracts as 

small as a 1 km2
 for a week or more.  Typically, they resided for several weeks in a general 

area several kilometers in extent before unpredictably shifting to another part of their range. 

Although Norton and Henley (1987) found no evidence to suggest common leopard 

patrolled home range edges, they noted that animals regularly and rapidly crossed their 

home area.  On average, rapid back and forth movement in snow leopard was observed 

every few weeks.  Bailey (1993), Rabinowitz & Nottingham (1986) and Sunquist (1981)

reported similar intra-home range movements for leopard, jaguar and tiger respectively. 

While the ranges of the four of the snow leopards using the study area overlapped almost

entirely (both within and between sex), this population was apparently dominated by 

relatively young individuals (see Chapter 4).  While the area was visited by a fully grown,

uncollared male, its pugmarks were infrequently sighted, suggesting that it may have 

roamed quite widely.  In early 1984, two subadult males (M2 and M3), a subadult female 

(F2) and at least one adult female (F1) shared the central portion of the study area; 

pugmarks indicated the presence of another female, at least one and probably 2 or 3 

uncollared subadults, as well the large adult male.  The two young males (M2 and M3) 

shared a common range for about a year, until M3 evidently left the area.  In another radio-

tracking study, the home ranges of a single male and two female snow leopards were found 

to overlap extensively (Oli, in prep.).  This investigator found the three leopards shared a

common overlapping zone of 8.1 km2 or nearly 40 percent of the largest home range 

reported, a similar amount of overlap to that documented in my study population.

An animal's home range has been defined as the area used by the particular individual 

during its normal activities, including food gathering, mating and the caring for young (Burt

1943).  However, resources needed by animals are generally not distributed evenly within 

the home range.  Typically, animals inhabit a heterogenous environment, with certain areas 

rich in resources, scattered throughout areas poor or much poorer in resources.  The 

harmonic mean values indicated that snow leopard home range use was significantly

concentrated into relatively small areas or a core area.  Identifying these areas is an 

important part of better understanding which ecological factors may influence spatial use 
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patterns (Samuel et al. 1985).  These investigators (1985:712) observed that "core areas are

those areas used more frequently than any other areas and probably contain the homesites,

refuges, and most dependable food sources"  Kitchener (1991) visualized the home range as 

an area which "consists of a series of trails which link together hunting areas, drinking 

places, resting areas, lookout positions, and denning sites where kittens or cubs can be 

safely reared."  

While researchers have shown that felid home ranges may vary greatly in size and shape 

with respect to time, position, space and the degree of overlap between conspecifics, our

understanding of the underlying causal factors is fragmentary.  A better appreciation of 

home range dynamics depends upon an understanding of the spatial characteristics of habitat 

in the study area, especially with respect to core and non-core use areas (Chapter 7), and 

the role of social interaction and communication (Chapter 8).  Information on the food 

habitats of snow leopards in the Langu Valley and elsewhere, along with a review of the

relevant aspects of the ecology of its principal prey species, blue sheep is presented in 

Chapter 9.  The significance of the spacing and habitat pattern observed in my study is

discussed in Chapter 10, along with speculation on how utilization patterns may differ in 

less heterogeneous environments. 
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CHAPTER 7 HABITAT USE PATTERNS

Habitat selection and use was examined using the snow leopard locations obtained from the

radio-tracking data-set.  Habitat characterization was based upon plot sampling (N = 147) 

of the major landform types found in the study area, and from a random sample of points 

(N = 1,096) using the Geographic Information System database.  This chapter summarizes

results of these investigations, and examines utilization patterns by snow leopards in the 

Langu Valley, especially with respect to core and non-core home range use. 

7.1 Habitat Characteristics of the Study Area 

7.1.1 Landform or Terrain Types

The most widespread landform types in the study area are smooth-surfaced terrain (39.2%) 

and cliffs (33.7%) (Figure 2).  See Table 3 (Chapter 3) for a description of each landform 

type.  The four major landform types, smooth, moderately broken, heavily broken and cliff,

differed with respect to such environmental features as elevation, slope, life-form 

composition, canopy composition, horizon distance and the density of shrubs or boulders in

excess of a meter high (Table 21).  Cliffs occurred at lower elevations than the other three

landform types, but mean elevation among the landform types varied by 250 m or less 

(Kruskal-Wallis H = 25.6, df 3, P < 0.0001).  Habitat sampling indicated that slope 

steepness was positively correlated with increasing land-surface ruggedness, from an 

average of 32° for smooth terrain to 62° for cliffs (r2 = 0.57; P < 0.0001).  Mean slope steepness

differed significantly among landform types (Kruskal-Wallis H = 85.7, df 3; P < 0.0001),

except for cliffs and heavily broken terrain which showed similar slope steepness 

on average; in general, the latter were 1.5 times as steep as less broken terrain types.  

Aspect was not found to be correlated with landform type.  Heavily broken and cliff areas

supported comparable vegetation canopy coverage, while smooth and moderately broken 

areas had significantly more vegetative cover (Kruskal-Wallis H = 48.9, df 3; P < 

0.0001).  Thus, vegetation canopy cover decreased slightly with increasing terrain 

brokenness (r2 = 0.15, P < 0.0001).  Sample plots in the different terrain types differed

significantly in terms of the percentage composition of grass and shrub, but not tree

composition (Table 21).  The proportion of shrub cover was significantly lower for plots
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Table 21: Characteristics of landform types in the Langu Valley based on habitat plots

Parameter / statistic
Landform Type

Smooth
LF = 4

Moderately
Broken
LF = 2

Heavily
Broken
LF = 3

Cliff
LF = 5

Test Statistic

Elevation (m)
  Sample Size
  Mean ± Std. Error
  Minimum
  Maximum

46
3733 ± 80.4
2990
4625

40
3500 ± 53.5
3050
4560

27
3578 ± 64.9
3010
4285

34
3251 ±  42.1
2995
3980

H = 25.62 ***

Slope Steepness (°)
  Sample Size
  Mean ± Std. Error
  Minimum
  Maximum

46
32 ± 1.2
5
50

40
39 ± 1.2
17
62

27
50 ± 2.2
25
75

33
62 ± 2.3
27
85

H = 85.71 ***

Mean Aspect ± Std.
Error (°)

85 ± 37.3 116 ± 45.9 112 ± 47.6 125 ± 37.6 n.s.

Avg Life-Form
Composition (percent)
  Sample Size
  Grass
  Shrub
  Tree

46
33.1
64.2
0.4

41
26.8
65.6
2.7

29
31.9
61.8
2.1

34
35.1
41.5
5.1

F = 4.89 ***

F = 8.77 ***

n.s.

Canopy Cover (%) 
Sample Size
  Mean ± Std. Error
  Minimum
  Maximum

46
26.7 ± 3.2
0
87.5

41
19.8 ± 2.9
0
67.5

29
10.2 ± 2.5
0
67.5

34
4.3 ± 0.7
0
17.5

H = 48.91 ***

Mean Horizon Dist (m)
Sample Size
  Down-slope
  Up-slope
  Across Slope 1
  Across Slope 2
  Avg (4 directions)

46
101.3 ± 6.5
71.8 ± 6.6
69.1 ± 6.3
61.6 ± 5.6
75.9 ± 3.8

41
73.6 ± 6.7
48.3 ± 5.3
48.8 ± 5.5
51.9 ± 6.3
55.7 ± 3.5

29
46.7 ± 7.5
22.1 ± 3.6
25.8 ± 7.3
19.4 ± 4.0
28.5 ± 3.2

34
98.1 ± 10.2
20.8 ± 5.8
46.6 ± 9.3
47.3 ± 8.9
53.2 ± 4.9

F = 9.75 ***

H = 55.19 ***

F = 6.13 **

H = 34.05 ***

H = 49.49 ***

Mean Distance (m) to:
 Nearest Shrub
 Nearest Rock
Average Height (m) of   
Nearest Shrub
 Nearest Rock

9.9 ± 0.7
13.7 ± 0.3

1.5 ± 0.1
1.7 ± 0.2

9.5 ± 0.6
10.7 ± 0.5

1.8 ± 0.2
1.2 ± 0.1

10.1 ± 0.6
8.5 ± 0.2

1.5 ± 0.1
9.9 ± 3.6

12.2 ± 0.5
11.1 ± 0.9

1.34 ± 0.1
7.0 ± 4.8

F = 3.41 **

H = 31.58 ***

n.s.
H = 14.37 **

Notes:

 H = Kruskal-Wallis one-way analysis of variance test value; F = F-ratio ANOVA test value
  * = P # 0.05, ** = P # 0.001, *** = P # 0.0001, n.s. = not significant 
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sampled on cliffs than the other three landform types examined (F-ratio = 8.8, df 3; P <

0.0001).  Mean percent grass cover ranged between 27 and 35%, with differences too weak 

for the LSD test to indicate which landform or landforms differed.

Eighty-six percent of areas mapped as a cliff and over half (64%) of the areas mapped as

consisting of very broken terrain supported little or no vegetative cover (Appendix A-1, 

barren vegetation type).  Vegetation cover in moderately broken areas is typically 

dominated by the barren, subalpine shrub and mixed shrubland types, whereas smooth 

terrain tends to support alpine grassland, barren, subalpine shrub and mixed shrub in 

decreasing order of occurrence. 

Judging by the distance to the nearest rock a meter high or more within each sampled 10 x 

10 m square plot, cliff, moderately and heavily broken landforms contained significantly 

more surface boulders than smooth-surfaced terrain (Kruskal-Wallis H = 31.5, df 3, P < 

0.0001) (Table 21).  Smooth and moderately broken terrain tended to support more dense, 

tall shrub cover than cliff areas (F-ratio = 3.4, df 3, P < 0.019).  While the average 

height of shrubs varied little between landforms, rocks tended to be 4 - 5 times higher in 

cliff and heavily broken sites than either smooth-surfaced or moderately broken areas 

(Kruskal-Wallis H = 14.4, df 3, P < 0.002). 

Horizon distances varied according to both direction of view and type of landform (Table 

21).  The furthest horizon tended to occur in the downslope direction, with more 

constrained distances along the upslope and across the slope horizon.  One-way analysis of

variance indicated significant differences among landform types for each of the four 

horizons sampled (Downslope F-ratio = 9.7; upslope Kruskal-Wallis H = 55.2; across 

slope #1 F-ratio = 6.1, P < 0.0001; across slope #2 Kruskal-Wallis H = 34.0, P < 

0.0001; df 3).  A multiple means test (P < 0.05) indicated smooth-terrain had significantly

further downslope horizon distances compared to moderately or heavily broken terrain;

generally, mean downslope distances decreased progressively from about 100 m for a cliff 

or smooth type to 74 m in moderately broken terrain and 47 m in heavily broken areas. 

Upslope horizons increased from about 20 m in heavily broken or cliff areas to twice as 

much (48 m) in moderately broken areas and three times as far (72 m) in the plots sampled

within smooth terrain areas.  A multiple means test indicated significantly greater (P < 0.05)

mean distances for moderately broken sites compared to heavily broken sites; 

similarly, upslope horizons were significantly further away in smooth-surfaced sites 
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compared to cliffs or heavily broken areas sampled.  Across-slope horizons were 

significantly greater in moderately broken and smooth areas compared to the more dissected

terrain found on cliffs or in heavily broken areas.

Descriptive statistics for elevation, slope, aspect and spatial characteristics of the four major

landform types in the study area based on GIS locations are summarized in Appendix A-2. 

Slopes are under-estimated, in large part because these were derived using a DEM (Digital

Terrain Model) based upon a coarse contour interval (500 feet or 152.5 m).  Smooth terrain

differs from broken or very broken terrain in being less steep, and further from the nearest 

travel corridor, linear feature, stream or other landform edge.  This landform is more 

closely associated with the upper mountain slopes or wide, U-shaped valleys, such as occur 

in the upper Tillisha and Mangar basins (Figure 2).  The second most-widespread landform 

type found in the study area are cliffs, distinguished as steep or very steep exposed rock 

slabs and strata with a slope steepness of at least 50°.  As Appendix A-2 indicates, the 

DEM-derived slopes are under-estimated, with cliffs showing a mean slope steepness of 

only 44°.  Cliffs which are not too steep, offer ledges and which contain vegetative or 

rocky cover are used as bedding sites and travel lanes by snow leopards, especially those at

lower elevation (see Section 7.3 for additional information).  Radio-tracking and pugmark 

sign indicated that leopards also utilized other linear landforms, such as landslides, 

rockfalls, riverine terraces and river-beds, for travel purposes. These terrain features are

characterized by having a more gentle slope, close proximity to permanent watercourses,

adjacent landform or vegetation edge, and increased distance from a ridgeline (Appendix A-

2).

7.1.2 Vegetation Associations

More than 53 percent of the study area supports the barren vegetative type, where the 

canopy cover is less than 10 percent (Figure 3).  Alpine grassland totals 15.9 percent, while 

the coverage of alpine shrubland and mixed shrubland is 16.1 and 11.4 percent respectively

(Table 4, Chapter 3).  Coverage by riparian woodland totals two percent, while there are a

number of small, isolated patches of birch (1.2%) and pine (0.2%) forest.  Alpine grassland 

and subalpine shrub are primarily associated with areas of smooth-surfaced terrain, while 

the barren type mostly occurs on cliffs (Appendix A-3).  Bare rock and ground  
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Table 22: Characteristics of vegetation types in the Langu Valley based on habitat plots

Parameter Vegetation Type

Barren Mixed Shrub Subalpine
Shrub

Alpine
Grassland

Test Statistic

Elevation (m)
 Sample Size
 Mean ± S.E.
 Minimum
 Maximum

68
3351 ± 42.5
2940
4560

57
3431 ± 31.4
2990
3900

15
4144 ± 72.9
3595
4570

8
4458 ± 42.1
4315
4625

H = 56.7 ***

Slope (°)
 Sample Size
 Mean ± S.E.
 Minimum
 Maximum

66
53.6 ± 1.93
0
80

59
37.9 ± 1.56
5
85

16
35.5 ± 2.83
18
55

8
33.1 ± 4.14
17
50

F = 18.48 ***

Mean Aspect (°)
 Sample Size
 Aspect ± S.E.

66
131 ± 43.4

59
97 ± 40.7

16
75 ± 56.5

8
67 ± 17.4 F = 4.79 **

Avg Life-Form
Composition (%) 
Sample Size
 Grass
 Shrub
 Tree

68
38.6
43.6
2.5

59
20.3
77.2
2.5

16
23.7
75.6
0.6

8
83.8
16.2
0

H 25.88 ***

H 49.39 ***

ns

Canopy Cover
(%) Sample Size
Mean ± S.E.
 Minimum
 Maximum

68
4.0 ± 0.4
0
17.5

59
24.5 ± 1.6
2.5
87.5

16
26.2 ± 4.9
7.5
67.5

8
42.5 ± 8.4
17.5
87.5

H = 99.62 ***

Horizon Distance
 Sample Size
 Down-slope
 Up-slope
 Across Slope 1
 Across Slope 2
 Average

68
81.2 ± 6.9
29.3 ± 4.5
43.0 ± 5.9
37.7 ± 5.2
47.8 ± 3.6

59
80.2 ± 6.1
52.1 ± 4.9
54.8 ± 5.2
55.3 ± 5.1
60.6 ± 3.5

16
90.1 ± 11.6
58.9 ± 10.4
55.7 ± 9.5
53.7 ± 9.5
64.6 ± 7.1

8
95.0 ± 16.1
82.3 ± 18.9
67.5 ± 21.2
68.6 ± 19.6
78.4 ± 10.7

ns
F = 7.55 ***

ns
F = 2.73 *
F = 4.52 **

Distance (m) to:
 Sample Size
Nearest shrub a
Nearest rock b
 Avg. Height --
Nearest Shrub
Nearest Rock

68
11.6 ± 0.4
10.5 ± 0.6

1.4 ± 0.6
7.9 ± 2.7

59
7.9 ± 0.5
11.8 ± 0.4

1.4 ± 0.1
2.4 ± 0.4

16
11.9 ± 1.0
12.0 ± 1.1

1.0 ± 0.2
1.5 ± 0.4

8
15.0 ± 0.0
11.8 ± 1.1

none present
2.5 ± 0.3

H = 42.96 ***

ns

ns
ns

Notes: 
  a  Distance to nearest shrub at least 1 m in height
  b  Distance to nearest rock or boulder at least 1 m high and 1 m wide or long
   
  H = Kruskal-Wallis one-way analysis of variance test value; F = F-ratio ANOVA test value

  * = P # 0.05, ** = P # 0.001, *** = P # 0.0001, ns = not significant 
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predominates at elevations in excess of 4,600 m, where plant growth is greatly impeded by 

low temperatures, poor soils and a short growing season.  

Selected characteristics of the four dominant vegetation types are summarized in Table 22. 

Mean elevation differed significantly between all vegetation types, except for subalpine

shrubland and alpine grassland (Kruskal-Wallis H = 56.7, df 3, P < 0.0001).  Barren sites

tended to be more southerly in their aspect than the other vegetation associations (F-ratio = 

4.8, df 3, P < 0.003), and contained significantly steeper slopes (F-ratio = 18.5, df 3, P 

< 0.0001).  They also supported significantly less vegetation cover than the other types

(Kruskal-Wallis H = 99.6, df 3, P < 0.0001).  In terms of vegetation life-form 

composition, alpine grassland supported significantly greater amounts of grass cover than 

the other communities (Kruskal-Wallis H = 25.9, df 3, P < 0.0001).  Similarly, mixed 

and subalpine shrub areas contained more shrub cover than the other two communities 

sampled (Kruskal-Wallis H = 49.4; df 3, P < 0.0001). 

Mean horizon distances differed between the four vegetation types (F-ratio = 4.5, df 3, P

<0.005).  Barren areas had significantly lower overall horizon visibilities, presumably

attributable to the presence of larger boulders (see below) in sampled plots (Table 22).  No

differences were detected between vegetation types in downslope visibility or across slopes 

in the left direction. Upslope horizons differed significantly between vegetation types (F-

ratio 7.5, 3 df, P < 0.0001) with considerably shorter horizon distances (29 m versus 52-

82 m) in barren sites (Table 22).  Shrub density, as indicated by the mean distance to the 

nearest shrub, was greatest in mixed shrubland followed by subalpine shrub and barren sites

respectively (Kruskal-Wallis H = 42.9, df 3, P < 0.0001).  No shrubs were present within 

plots sampled in alpine grassland.  The mean height of shrubs did not differ among 

vegetation types sampled, and no significant differences in terms of boulder density or 

height were detected.

Mixed shrub and tree stands tend to occur at lower elevation than the other vegetation cover

types (Appendix A-4).  Habitat features tend to reflect those of the landforms with which 

each vegetation cover type is most closely associated.  For example, alpine grassland sites 

are less steep, located relatively far from the nearest vegetation or landform edge, or a 

travel route and ridge; a similar pattern exists in areas of smooth terrain.  The small, mostly

linear patch size and shape of vegetation types dominated by trees (birch and pine forest and 
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riparian woodland)  is reflected by a relatively close proximity to the nearest other 

vegetation type (38 m), travel corridor (204 m), or river (182 m), and relative remoteness 

(318 m) from a ridge compared to other vegetation types.

7.1.3 Size and Configuration of Landform and Vegetation Types

The size and perimeter for habitat polygons found in the study area vary with respect to

landform type and vegetation association (Appendix A-5).  In general, cliff and smooth

landform polygons were larger than those of moderately or very broken terrain areas; if the

linearly contiguous areas of stream and riverbed are excluded (with their associated riparian 

tree cover), stands of birch averaged 11.8 ha, compared to 2.3 ha for the pine forest type. 

Alpine grassland areas were nearly 3 times as large as mixed shrub or subalpine shrub 

habitat polygons, indicating they occurred in relatively contiguous stands in less broken 

terrain at higher elevation.  GIS tabulations indicates barren areas are substantially larger 

than other vegetation associations, but this figure is somewhat misleading for it is based 

upon a few artificially large computer generated polygons. In reality, barren areas tend to 

be contiguous, linked together via narrow gaps that would normally constitute an edge for

wildlife.  Most low or mid-elevation barren sites are heavily dissected or broken by other 

cover types (Figure 2).

Patton's diversity index offers a measure of ecotonal habitat availability or patch size (Hays 

et al. 1981; Patton 1975).  With this measure, the ratio of edge to area of a plot is 

compared to that of a circle having the same area.  Not surprisingly, linear and cliff terrain 

types support the most edge, with heavily broken areas containing the least amount 

(Appendix A-5).  Barren and tree cover types supported 3-5 times as much ecotonal edge as

mixed shrub, subalpine shrub or alpine grassland.

7.2 Habitat and Spatial Utilization Patterns in Snow Leopards

Descriptive statistics (sample size, mean, minimum and maximum values) of selected

environmental parameters at random sites, and male and female snow leopard locations are

listed in Appendices A-6 and A-7.  Comparisons between random sites (N = 1,096 and 

snow leopard locations (N = 593) for 21 spatial parameters are listed in Table 23, which 
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Table 23: Selected habitat and spatial variables at snow leopard and random locations

Habitat Parameter a
Random Locations
 (n = 1,096)

Leopard Locations
 (n = 593)

 Test Statisticb

 Mean Std. Error Mean Std. Error

Elevation (m) 4,177 20.5 3,519 17.8 U = 136106.5 ***

P2 = 360.90

Slope (degrees) 38 0.4 43 0.5 U = 397521.5 ***  P2 = 61.66

Aspect (degrees) 157 51.3 165 45.0 U = 368083 ***  P2 = 20.36

Dist landform edge 69 2.4 40 1.8 U = 248898 ***  P2 = 63.21

Dist veg edge 83 3.3 47 1.9 U = 252739.5 ***  P2 = 56.99

Dist nearest LF 2 231 7.7 158 6.3 t = -3.71 ***

Dist nearest LF 3 303 10.4 173 6.8 t = -4.33 ***

Dist nearest LF 4 84 3.6 94 4.1 U = 373006 ***  P2 = 26.186

Dist nearest LF 5 91 3.8 49 3.2 t = -6.28 ***

Dist Alpine
Grassland

442 13.7 893 20.5 U = 490122 *** P2 = 298.47

Dist Barren cover 36 2.1 39 2.8 t = 0.90  ns

Dist Mixed Shrub 811 25.8 172 13.4 t = 18.15 ***

Dist Subalpine Shrub 265 8.6 296 11.7 t = 1.16  ns

Dist Tree cover 1,075 27.1 398 17.3 t = 12.52 ***

Dist DNOT4 138 4.8 122 4.5 t = -0.82  ns

Dist DNOT5 139 5.9 89 4.7 t = -5.25 ***

Dist river or stream 828 17.8 598 18.2 U = 253754 ***  P2 = 55.4

Dist bluff 2,520 47.8 1,025 26.0 U = 132312 ***  P2 = 405.49

Dist confluence 2,664 46.9 1,841 53.9 U = 203278.5 *** 
P2 = 161.77

Distance any ridge 250 6.1 161 5.9 U = 236402 ***  P2 = 85.69

Dist major ridge 493 13.8 545 21.5 t = 0.55  ns

Dist minor ridge 855 13.9 713 15.3 t = 5.29 ***

Dist linear landform
feature

1,012 23.2 391 14.9 U = 158510 ***  P2 = 302.7

Dist travel lane 1,031 19.2 708 23.3 U = 214112 ***  P2 = 134.25

a Dist = distance to nearest specified landform or vegetation type.  All distances are measured in
meters; LF = landform type; DNOT4 = distance nearest landform # 4 when not located in this 
type; DNOT5 = distance nearest landform # 5 when not located in LF 5;

b t = Two-sample t-test value, unequal sample size (pooled variances, df = 591); U = Mann-
Whitney  U
*** = P # 0.0001;  ns = not significant

 Variables transformed to meet homogeneity of variance requirement
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indicates means differed in all parameters except for distance to the nearest barren landform

type, subalpine shrub type and the nearest major ridge-line.  In addition, mean distance to 

the nearest patch of smooth terrain when not in this type did not differ between random and

snow leopard sites.  The same comparisons for male and female snow leopards are shown 

in Table 24; no significant difference was detected between males and females for over half 

of the parameters examined, suggesting a similar habitat pattern in both.

The following paragraphs describe specific habitat preferences and patterns exhibited by the 

5 snow leopards I studied. 

7.2.1 Landform Features

Elevation:  Snow leopard locations were 650 m lower, on average, than the mean elevation 

for a random sampling of points within the study area, a significant difference (Table 23). 

Although mean elevation varied by sex (Table 24), the small difference involved (72 m) is 

not of biological importance; data from male and female snow leopards were therefore

combined according to 8 elevational categories.  Snow leopards exhibited a significant

preference for those areas with an elevation of 4,050 m or less, while significantly under-

utilizing areas above 4,200 m in elevation (P2 = 413.6, df 7, P < 0.001) (Table 25). 

Approximately 60% of the study area is located above the 4,200 m contour, with less than 

25% occurring below an elevation of 3,600 m.

Slope Steepness:  Although snow leopards selected sites with a steeper gradient, these 

differed by only 5° from those available by chance alone.  The data also showed that snow

leopards avoided gentle slopes, especially those with a gradient of 30° or less.  While mean

slope steepness differed significantly between sexes, it amounted to less than two degrees

(Table 24).  Both sexes showed significant under-use or avoidance of less steep slopes 

(#40°) and over-use or preference for slope categories in excess of 40° (Table 26).  

Female snow leopards sampled showed a stronger preference for slopes in excess of 40° 

than the males, as well as a more pronounced avoidance for areas with gradients of 20° or 

less (females P2 = 73.9, df 4, P <0.001; males P2 = 35.7, df 4, P < 0.001). 

Aspect:  Although the mean aspect of snow leopard and random sites was significantly 

different, this amounted to only 8 degrees (Table 23).  Snow leopards of both sex
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Table 24: Habitat and distance preferences shown by 3 male and 2 female snow leopards

Habitat Parameter a
Male Locations
 (n = 265)

Female Locations
 (n = 328)

Test Statisticb

 Mean Std.
Error

Mean Std.
Error

t-value

Elevation (m) 3479.1 26.1 3551.6 24.3 2.03 *

Slope (degrees) 42.1 0.8 44.1 0.6 2.09 *

Aspect (degrees) 155.4 3.5 158.2 3.2 ns

Dist nearest landform edge 38.3 2.6 40.9 2.5 ns

Dist nearest vegetation edge  c 45.4 2.6 48.1 2.7 ns

Dist nearest LF 2 153.9 8.9 161.9 8.8 ns

Dist nearest LF 3 183.2 9.9 164.9 9.3 ns

Dist nearest LF 4  c 87.3 6.3 100.3 5.4 2.49 *

Dist nearest LF 5  c 58.2 5.1 41.8 3.9 2.17 *

Dist nearest Alpine Grassland 865.8 30.2 915.9 27.9 ns

Dist nearest Barren cover type  c 46.2 4.4 33.4 3.6 2.57 **

Dist nearest Mixed Shrub 131.8 15.7 203.8 20.5 2.52 *

Dist nearest Subalpine Shrub 320.6 17.9 276.5 27.9 ns

Dist nearest Tree cover type  c 292.9 10.0 483.3 26.7 3.13 **

Dist DNOT4 118.1 7.3 124.6 5.7 ns

Dist DNOT5  c 99.6 7.1 80.2 6.3 ns

Dist nearest river or stream  c 536.3 23.2 647.5 26.9 2.65 **

Dist nearest bluff 1031.3 38.3 1020.1 35.5 ns

Dist nearest confluence  c 1492.8 48.6 2122.5 86.1 4.51 ***

Distance nearest ridge (any) 162.7 8.8 159.9 8.0 ns

Dist nearest major ridge  c 443.1 27.7 627.8 31.1 2.85 **

Dist nearest minor ridge  c 700.9 22.6 722.9 20.9 ns

Dist nearest linear landform
feature  c

360.6 18.9 415.9 22.3 ns

Dist nearest travel lane  c 590.4 29.3 802.7 34.1 3.74 ***

a Dist = distance to nearest specified landform or vegetation type.  All distances are
measured in meters; LF = landform type; DNOT4 = distance nearest landform # 4 when
not located in this type; DNOT5 = distance nearest landform # 5 when not located in LF
5;

b Two-sample t-test value, unequal sample size (pooled variances, df = 591)
* = P # 0.05, ** = P # 0.001, *** = P # 0.0001, ns = not significant

c Variable transformed to meet homogeneity of variance requirement
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Table 25: Observed and expected use of elevational categories by 5 snow leopards

Class
Code

Elevation
(meters)

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion
of usage
(Pi)

Index of
Electivity

Significance

1 <=3300 0.123 194 72.9 0.327 +0.454 SD +

2 >3300 -
3450

0.053 98 31.6 0.165 +0.512 SD +

3 >3450 -
3600

0.051 60 30.5 0.101 +0.326 SD +

4 >3600 -
3750 

0.065 65 38.4 0.110 +0.257 SD +

5 >3750 -
3900 

0.051 51 29.9 0.086 +0.260 SD +

6 >3900 -
4050

0.061 57 36.2 0.096 +0.223 SD +

7 >4050 -
4200

0.051 25 30.5 0.042 -0.100 NS

8 >4200 0.544 43 322.8 0.073 -0.765 SD -

All Cats (593 locations): P2 = 657.14; df=7, P < 0.0001

1) Availability based on 1,049 random locations.
2) SD indicates that observed utilization (Pi) of the category is significantly (P < 0.05) greater 

("+" indicates preference) or less ("-" indicates avoidance) than expected by chance and NA 
indicates no difference.  Significance value indicated above.

3) Index of electivity (Ivlev 1961) = (obs - exp)/(obs + exp), values range from -1 to +1.

significantly under-utilized areas with a northerly and easterly aspect (i.e., slopes facing

northwest through north and northeast), while over-utilizing sites with a southerly aspect (P2 

= 83.2, df 3, P < 0.001) (Table 27).  The index of electivity suggests that strong 

avoidance of  north-facing areas (i.e., those with an aspect between 315° and 45°, and

constituting approximately 12% of the study area), with greater than expected use of south-

facing slopes ($ 135° and < 225°) which constitute nearly half of the study area.
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Table 26: Observed and expected use of slope categories by 5 snow leopards

Class
Code

Slope
Steepness
(degrees)

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion
of usage
(Pi)

Index of
Electivity

Significance

MALE CATS

0 <20 0.091 17 24.2 0.064 -0.174 NS

1 20 to <30 0.131 16 34.8 0.060 -0.370 SD -

2 30 to <40 0.298 58 79.1 0.219 -0.154 SD - 

3 40 to <50 0.535 17 83.2 0.442 +0.169 SD +

4 >50 0.293 57 43.8 0.215 +0.131 NS

FEMALE CATS 

0 <20 0.091 8 29.9 0.024 -0.578 SD -

1 20 to <30 0.131 20 43.1 0.081 -0.366 SD -

2 30 to <40 0.298 76 97.9 0.232 -0.126 SD -

3 40 to <50 0.314 126 102.9 0.384 +0.101 SD +

4 >50 0.165 98 54.2 0.299 +0.288 SD +

Males (locations=265): P2 = 35.67, df = 4,  P < 0.001; Females (locations=328): P2 = 
73.956, df = 4, P < 0.001; Both sexes: P2 = 99.25, df = 4, P < 0.0001

1) Availability based on 1,096 random locations.
2) SD indicates that observed utilization (Pi) of the category is significantly (P < 0.05) greater 

("+" indicates preference) or less ("-" indicates avoidance) than expected by chance and NA
indicates no difference.  Significance value indicated above.

3) Index of electivity (Ivlev 1961) = (obs - exp)/(obs + exp), values range from -1 to +1.

Landform Type:  Male and females significantly over-utilized cliffs (LF 5) and linear 

landforms (LF 20), while under-utilizing smooth or evenly-surfaced terrain (LF 4) (P2 = 

82.9, df 4, P < 0.0001) (Table 28).  Moderately and heavily broken areas are used in

approximate proportion to their availability within the study area.  Indices of electivity 

indicated strong preference for bedding in linear landforms while smooth terrain was 

avoided.  Use levels increased progressively with increased terrain brokenness from smooth,

open terrain to through moderately broken areas (LF 2) to cliffs (LF 5) and linear 

landforms (LF 20), with reduced use in areas of very broken terrain, as exemplified by  

Table 27: Observed and expected use of aspect by 5 snow leopards
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Class
Code

Aspect
(degrees)

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion
of usage
(Pi)

Index of
Electivity

Significance

N $ 315° to 
< 45°

0.119 16 70.3 0.027 -0.629 SD -

E $ 45° to  
< 135°

0.180 64 106.6 0.108 -0.250 SD -

S $ 135° to 
< 225°

0.422 321 249.9 0.541 +0.124 SD +

W $ 225° to 
< 315°

0.280 192 166.1 0.324 +0.072 NS

All Cats (locations = 593): P2 = 83.215; df = 3,  P < 0.0001

Table 28: Observed and expected use of landform categories for 5 snow leopards

Landform
Category

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion of
usage (Pi)

Index of
Electivity

Significance

Moderately
broken (LF 2)

0.128 89 75.7 0.150
+0.080 NS

Very Broken
(LF 3)

0.117 73 69.2 0.123 +0.026 NS

Smooth (LF 4) 0.392 133 232.6 0.224 -0.273 SD -

Cliff (LF 5) 0.337 267 199.6 0.450 +0.144 SD +

Linear (LF 20) 0.026 31 15.7 0.052 +0.328 SD +

All Cats (593 locations): P2 = 82.86; df=4  P < 0.0001

- See Table 26 for explanation of availability, statistical significance and index of electivity
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landform type 3 (a category of landform which is heavily dissected in all three dimensions). 

The data, therefore, seem to reflect the snow leopard's predilection for bedding in steep, 

broken places and along linear landforms.

Adjacent Landform Type:  The Langu snow leopards tended to select sites where the closest

landform type consisted of a landslide, rockfall, river bluff or terrace and river bed (LF 20)

more frequently than expected by chance (P2 = 71.8, df 4, P < 0.0001) (Table 29).  This

category of grouped landforms tends to be linear rather than areal or zonal in nature, and

appears to be used by snow leopard as a "travel lane", especially within the core use area 

(see later).  The significant under-utilization of cliffs as the nearest landform type probably

reflects the likelihood that leopards are already using such areas within the immediate 

vicinity.

Distance to Nearest and Other Landform Edges:  On average, snow leopards were 

significantly closer (40 m) to a landform edge than by chance alone, with the average 

distance to edges in the study areas being 69 m (Table 23).  Leopards of both sexes

over-utilized areas immediately close to the nearest landform edge, while under-utilizing 

sites more than 75 m away (P2 = 99.5, df 5, P < 0.001).  The avoidance of sites 150 m or 

more from an edge is especially marked, as indicated by a high index of electivity value 

(Table 30).  Leopards were respectively 32, 43, 46 and 61 percent closer to moderately 

broken terrain, very broken terrain, a cliff and a linear landform than on the basis of 

availability alone (Table 23). 

Males and female snow leopards did not differ in terms of mean distance to the nearest

moderately broken, very broken, and linear landform feature (Table 24).  Mean distances to 

the nearest cliff and smooth terrain differed significantly between males and females, but 

this involved a small difference (cliff = 19 m; smooth terrain = 13 m) and one unlikely to 

be important from the viewpoint of either habitat selection or intraspecific competition.  

Use-availability analysis indicated that snow leopards were located within 50 m of 

moderately broken terrain significantly more than expected by chance alone, while 

significantly under-utilizing sites more than 125 m away (P2 = 40.9, df 5, P < 0.0001).  

Similar patterns were detected with respect to cliffs (P2 = 70.4, df 5, P < 0.0001) and 

very broken terrain (P2 = 38.4, df 5, P < 0.0001), further evidence that snow leopards 
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show strong preferences for being near a landform edge.  While males showed no particular

spatial preference with respect to smooth terrain, females significantly under-utilized sites

within a distance of 50 m, while over-utilizing sites located at distances of 75 - 100 m (P2 

= 53.2, df 5, P < 0.0001).  This suggests that female snow leopards are seeking daytime 

bedding sites located a greater distance from open, smooth-sloped areas than are males.

Distance to nearest Cliff when not located on this landform type (Variable DNOT5):  The 

mean distance to the nearest cliff is 89 m for snow leopards and 139 m for random sites, a

difference of 50 m (Table 23).  No difference in male and female proximity to a cliff was

detected when animals were not utilizing this landform type (Table 24).  However, snow

leopards tended to occur within 50-75 m of a cliff significantly more than expected by 

chance alone (Table 31), while under-utilizing areas more than 125 m away (P2 = 48.8, df 

5, P < 0.001), suggesting that they are located closer to a cliff than by chance alone, even 

when not using this landform feature.

Distance to nearest Smooth Terrain when not located on this landform type (Variable 

DNOT4):  No differences in use of the same six distance categories were detected with 

respect to proximity to smooth terrain (P2 = 10.1, df 5, P < 0.07); when not located in 

this type, no significant differences were detected between random and occupied sites (Table

23).  Furthermore, mean distance to smooth terrain when bedded in another landform type 

was similar between male and female leopards (Table 24).

Distance to Moderately (DNOT2) and Heavily Broken Terrain (DNOT3) when not located in

these types:  Snow leopards of both sex significantly over-utilized areas within 50 m of

moderately broken terrain, while under-utilizing sites more than 150 m away (P2 = 40.9, df 

5, P < 0.0001) (Table 32).  A similar spatial use pattern exists in relation to areas of very 

broken terrain (P2 = 38.4, df 5, P < 0.0001), suggesting that the study animals preferred 

to bed close to these types, even when not utilizing them.

Distance to the nearest Linear Feature (LF type 20) when not located in this type 

(DNOTLIN):  Snow leopards of both sex were located significantly closer to a linear 

landform feature than by chance alone (Table 23).  Chi-square use-availability analysis

indicated that most sites within 125 m of a linear terrain type were significantly over-
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utilized, while sites further away were significantly under-utilized (P2 = 176.2, df 5, P < 

0.0001) (Table 33). 

Other Spatial Patterns:  There is evidence to suggest that snow leopards frequently use 

ridges and stream or river-beds to move about their home ranges.  For example, they were 

likely to be located on or near a ridge, with the mean distance to the nearest ridgeline being 

161 m compared to 250 m for random points (Table 23).  Furthermore, 58% and 60% of 

male and female relocations, respectively, were found to be located within 100 m of a 

major or well-defined ridge-line; use-availability analysis indicated significantly greater use 

than expected of sites within 50 or 75 m of a ridge-line, while sites located further than 150 

m away were significantly under-utilized (P2 = 123.7, df 5, P < 0.0001) (Table 34).  Sites 

within distances 75 to less than 150 m were used in proportion to their availability.  On 

average, male snow leopards were located significantly closer (443 versus 628 m) to a 

major ridgeline than females (Table 24).

GIS was used to identify potential snow leopard travel routes within the study area, since 

the literature confirms the preference of snow leopards for moving along sharp ridge-lines,

cliffs, river-beds and along other natural landform edges (Fox 1989; Heptner and Sludskii 

1992; Koshkarev 1984; Schaller 1977).  These were defined by establishing a 200 m wide

buffer centered along the crest of a major or minor ridgeline, and a river or stream-bed 

(Figure 16).  Male snow leopards tended to be some 200 m closer to a potential travel lane 

than the females, a significant difference (Table 24).  The mean distance to a travel lane in 

the study area is slightly over a kilometer (Table 23).  Although males were also closer 

(361 m) to a linear landform feature (landfalls and stream-beds, but not ridgelines) than 

females (416 m), this difference was not significant. Nearly 42 percent of male locations 

and 38 percent of female locations were situated within a potential travel lane.

Males and females differed significantly in terms of mean distance to the nearest stream and

river confluence: males were over 600 m closer than the females sampled (Table 24).  In

addition, sites closer than 2 km to a river or major stream confluence were significantly  

more heavily utilized than expected by chance alone, while sites further than 2.5 km from a

confluence were significantly under-utilized (P2 = 319.3, df 5, P < 0.001) (Table 35). 
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Table 29: Observed and expected use of nearest landform type for 5 snow leopards

Landform
Category

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion of
usage (Pi)

Index of
Electivity

Significance

Moderately
Broken (LF 2)

0.209 127 123.9 0.214 +0.012 NS

Very Broken
(LF 3)

0.179 111 106.0 0.187 +0.023 NS

Smooth (LF 4) 0.222 134 131.5 0.226 +0.010 NS

Cliff (LF 5) 0.345 154 204.5 0.260 -0.141 SD -

Linear (LF 20) 0.046 67 27.0 0.113 +0.425 SD +

All Cats (593 locations): P2 = 71.823; df = 4,  P < 0.0001

- See Table 26 for explanation of availability, statistical significance and index of electivity

Table 30: Observed and expected use of distance to nearest landform edge for 5 snow leopards

Class
Code

Dist. nearest
landform edge
(meters)

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion
of usage
(Pi)

Index of
Electivity

Significance

1 & 2 # 50 0.564 438 334.4 0.739 +0.134 SD +

3 > 50 to # 75 0.149 86 88.2 0.145 -0.013 NS

4 > 75 to # 100 0.081 32 48.1 0.054 -0.202 SD -

5 > 100 to # 125 0.048 15 28.7 0.025 -0.313 SD -

6 > 125 to # 150 0.029 7 17.3 0.012 -0.424 SD -

7 - 16 > 150 0.129 15 76.3 0.025 -0.671 SD -

All Cats (593 locations): P2 = 99.493; df = 5,  P < 0.0001

- See Table 26 for explanation of availability, statistical significance and index of electivity
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Table 31: Observed and expected distance to the nearest cliff when a snow leopard is not
located on a cliff

Class
Code

Distance
to nearest
Cliff
(meters)

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion
of usage
(Pi)

Index of
Electivity

Significance

1 # 25 0.167 68 54.3 0.209 +0.112 NS

2 > 25 to 
# 50

0.157 62 51.2 0.190 +0.096 NS

3 > 50 to 
# 75

0.110 54 35.9 0.166 +0.201 SD +

4 > 75 to 
# 100

0.091 41 29.6 0.126 +0.161 NS

5 > 100 to
# 125

0.062 27 20.2 0.083 +0.144 NS

6 - 16 > 125 0.413 74 134.7 0.227 -0.291 SD -

Both sexes: P2 = 48.82; df = 5,  P < 0.0001

- Number cat locations = 326; random points = 726; see Table 26 for explanation of statistical
significance and index of electivity



114

Table 32: Observed and expected distances to the nearest moderately broken terrain type (2)
landform when a snow leopard is not located within this landform type

Class
Code

Distance to
nearest
Type 2
(meters)

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion
of usage
(Pi)

Index of
Electivity

Significance

1 & 2 # 50 0.145 109 73.3 0.216 +0.196 SD +

3 > 50 to #
75

0.086 45 43.2 0.089 +0.020 NS

4 > 75 to #
100

0.065 27 32.7 0.054 -0.095 NS

5 > 100 to #
125

0.059 46 29.5 0.091 +0.218 NS

6 > 125 to #
150

0.046 31 23.2 0.062 +0.144 NS

7 - 16 > 150 0.599 246 302.1 0.488 -0.102 SD -

Both sexes: P2 = 40.94; df = 5,  P < 0.0001

- Cat locations = 504; random locations = 956; See Table 26 for explanation of availability, statistical
significance and index of electivity
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Table 33: Observed and expected distances to the nearest linear landform (20) type when a
snow leopard is not located within the same type

Class
Code

Dist nearest
Linear
Landform
(meters)

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion of
usage (Pi)

Index of
Electivity

Significance

1 & 2 # 50 0.032 52 17.9 0.093 +0.488 SD +

3 > 50 to # 75 0.018 25 10.0 0.044 +0.428 SD +

4 > 75 to # 100 0.020 22 11.1 0.039 +0.331 NS

5 > 100 to #
125

0.015 25 8.4 0.044 +0.496 SD +

6 > 125 to #
150

0.014 23 7.9 0.041 +0.489 SD +

7 - 16 > 150 0.902 415 506.7 0.738 -0.099 SD -

Both sexes: P2 = 176.22; df = 5,  P < 0.0001

- Cat locations = 562; Random locations = 1,067; See Table 26 for explanation of availability, statistical
significance and index of electivity

7.2.2 Vegetation Associations

Vegetation Types:  Snow leopards utilized mixed shrubland and tree cover types in excess of

their availability, while significantly under-utilizing the alpine grassland and barren cover 

types (P2 = 229.7, df 4, P < 0.001) (Table 36).  Subalpine shrubland is used in approximate

proportion to its availability.  Preferences shown for mixed shrubland and a vegetation

association dominated by trees are more pronounced, while alpine grassland is avoided for

daytime bedding.  Typically, the tree cover types found within the snow leopard home ranges

are extremely small, and are presumably used primarily for daytime bedding.  F1's selection 

of a cliff with a small birch forest for her maternal den also influences the strong electivity

index for this vegetation cover type.
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Table 34: Observed and expected use of distance to the nearest ridge for 5 snow leopards. 

Code
Distance
Interval to
nearest ridge
(meters)

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion
of usage
(Pi)

Index of
Electivity

Significance

1/2 # 50 0.140 157 82.8 0.265 +0.310 SD +

3 > 50 to
# 75

0.057 56 34.1 0.094 +0.243 SD +

4 > 75 to
 # 100

0.076 55 44.9 0.093 +0.101 NS

5 > 100 to
 # 125

0.056 46 33.0 0.078 +0.164 NS

6 > 125 to
# 150

0.072 30 42.7 0.051 -0.175 NS

7 -
16

> 150 0.599 249 355.5 0.420 -0.176 SD -

All Cats (593 locations): P2 = 123.70; df = 5,  P < 0.0001

- See Table 26 for explanation of availability, statistical significance and index of electivity
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Table 35: Observed and expected use of distance to the nearest river or stream confluence 
for 5 snow leopards. 

Class
Code

Distance to
stream
confluence
(meters)

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion
of usage
(Pi)

Index of
Electivity

Significance

1 < 500 0.021 46 12.4 0.078 +0.574 SD +

2 $ 500 to 
< 1,000

0.070 93 41.7 0.157 +0.381 SD +

3 $ 1,000 to 
< 1,500

0.142 142 84.4 0.239 +0.254 SD +

4 $ 1,500 to 
<  2,000

0.146 127 86.6 0.214 +0.189 SD +

5 $ 2,000 to 
< 2,500

0.170 84 100.6 0.142 -0.090 NS

6 $ 2,500 to <
3,000

0.158 27 93.6 0.046 -0.552 SD -

7 $ 3,000 to 
< 3,500

0.081 20 48.1 0.034 -0.413 SD -

8 + $ 3,500 0.212 54 125.5 0.091 -0.398 SD -

All Cats (593 locations): P2 = 319.29; df = 7,  P < 0.0001

- See Table 26 for explanation of availability, statistical significance and index of electivity

Table 36: Observed and expected use of vegetation types by 5 snow leopards

Class
Code

Vegetation
Type

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion of
usage (Pi)

Index of
Electivity

Significance

AG Alpine
grassland

0.159 21 94.1 0.035 -0.635 SD -

BA Barren 0.533 270 315.9 0.455 -0.078 SD -

MS Mixed
Shrubland

0.114 170 67.6 0.287 +0.431 SD +

SA Subalpine
Shrubland

0.161 97 95.2 0.164 +0.009 NS

TREE Tree types 0.034 35 20.0 0.059 +0.272 SD +

All Cats (593 locations): P2 = 229.71; df = 4, P < 0.0001

- See Table 26 for explanation of availability, statistical significance and index of electivity
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Nearest Vegetation Type:  Snow leopard locations were significantly closer to mixed 

shrubland and tree cover types than random sampling points (Table 23).  The mean distance 

to all vegetation associations except for alpine grassland and subalpine shrub differed with

respect to sex (Table 24).  On average, females were 33 m from a barren area compared to 

46 m for male snow leopards, but this may not be biologically meaningful.  Spatial 

differences between sexes were greater in the case of mixed shrub vegetation, with males 

being located 80 m closer than females.  Males were significantly closer on average (293 

m) to a tree cover type than female snow leopards (483 m), although use of this type did 

not differ between the sexes.

Snow leopards preferred to use sites in which the nearest vegetation types are barren and 

mixed shrubland, while apparently avoiding areas closest to alpine grassland and subalpine

shrub vegetation (P2 = 308.2, df 4, P < 0.001) (Table 37).

Distance to Nearest Vegetation Edge:  On average, random sites were 83 m from the 

nearest vegetation edge, compared top 47 m for the snow leopard locations, a significant

difference (Table 23).  No significant difference was detected between sex in terms of 

distance to the nearest vegetation edge (Table 24).  However, sites closer than 50 m to a

vegetation edge was used significantly more than on the basis of availability, while sites 100 

m or further from an edge were significantly under-utilized (P2 = 140.8, df 5, P < 0.0001)

(Table 38).  Thus, both male and female snow leopards were more likely to be located 

within 50 m of an edge than at a distance of 125 m or more.  Electivity index values 

indicate strong levels of avoidance for all sites which are this distance or further from a

vegetation cover edge, a pattern most evident in the two females sampled.

7.3 Comparison of Habitat Characteristics and Utilization between the Core and Non-Core

Use Areas

The harmonic mean distributions strongly supported the contention that monitored snow

leopards had preferred use areas within their respective home range, to which they returned

frequently.  These areas overlapped geographically to a large degree.  The question then 

arises whether the core area offers higher quality habitat for snow leopard than the non-core

area, or conversely, whether snow leopard core use is determined more by social factors, 

such as intraspecific marking and communication.  Associated questions are whether the
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snow leopard's habitat use pattern differs between core and non-core areas, and if so, which

habitat attributes or features could be most effectively used to predict core from non-core 

sites in the Langu Valley as well as other areas inhabited by this species?  These questions 

are explored in the following sections.

7.3.1 Habitat Similarities and Differences

Core and non-core areas differ with respect to habitat condition.  The average elevation, 

slope, aspect and the mean distance to selected landform types, habitat features and 

vegetation associations for random sites located in either the core or non-core portions of 

snow leopard home range areas are listed in Appendix A-8 (Parts 1 and 2).  Based upon 

habitat preferences shown by snow leopards, these data suggest that the core area offers

potentially more suitable habitat than that present within the non-core area.  For example,

random sites within the core are closer to the nearest landform or vegetation edge, 

significantly closer to linear landform features (262 m compared to 1,063 m), potential 

travel routes (388 versus 1,076 m), moderately broken areas (150 versus 237 m), very 

broken areas (191 versus 311 m), ridges (140 versus 258 m), a stream or river (460 versus 

854 m), mixed shrubland (94 versus 862 m), and a tree vegetation type (204 versus 1,137 

m).  Conversely, core sites are located significantly further from subalpine shrubland (337

versus 260 m) and alpine grassland (860 versus 413 m).  Mean elevations in the core area

(3,147 m) are significantly lower than random sites sampled in the non-core areas (4,230 

m).  No differences were detected between core and non-core areas with respect to slope

steepness and aspect, or the distance to the nearest cliff, major ridgeline or smooth terrain. 

Widely applied landscape ecology indices suggest that core areas support higher relative

richness, diversity and fragmentation of habitat, compared to the non-core area, with respect 

to both terrain and vegetation types (Appendix A-9).  There is also greater diversity with 

respect to the number of landform and vegetation types within a three by three 

neighbourhood of cells 200 meters square in size (NDC index), as well as greater contrast

between types (CVN index).  The study area's complex juxtaposition and rich diversity of

different terrain and vegetation types (Figures 2 and 3) is largely attributable to the high 

amount of edge and relatively small habitat patch size, as noted earlier (Appendix A-5).  In

terms of ecological scale, the study area is probably best described as being of the
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 Table 37: Observed and expected use of the nearest vegetation type by 5 snow leopards

Code Nearest
Vegetation
Type

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion
of usage
(Pi)

Index of
Electivity

Significance

AG Alpine
grassland

0.191 16 113.1 0.027 -0.752 SD -

BA Barren 0.351 244 208.3 0.411 +0.079 SD +

MS Mixed
Shrubland

0.152 217 90.4 0.366 +0.412 SD +

SA Subalpine
Shrubland

0.261 79 154.7 0.133 -0.324 SD -

TREE Tree types 0.045 37 26.5 0.062 +0.165 NS

All Cats (593 locations): P2 = 308.19; df = 4, P < 0.0001

- See Table 26 for explanation of availability, statistical significance and index of electivity

Table 38: Observed and expected use of distance to nearest vegetation edge for 5 snow
leopards. 

Class
Code

Distance to
vegetation
edge 
(meters)

Expected
proportion
of usage

Observed
usage

Expected
usage

Observed
proportion of
usage (Pi)

Index of
Electivity

Significance

1 & 2 # 50 0.497 429 294.9 0.723 0.185 SD +

3 >50 to #75 0.149 69 88.2 0.116 -0.122 NS

4 >75 to # 
100

0.106 52 62.8 0.088 -0.094 NS

5 >100 to # 
125

0.038 12 39.5 0.020 -0.534 SD -

6 >125 to #
150

0.026  7 23.8 0.012 -0.546 SD -

7 - 16 >150 0.066 24 83.9 0.040 -0.555 SD -

All Cats (593 locations): P2 = 140.77; df = 5,  P < 0.001

- See Table 26 for explanation of availability, statistical significance and index of electivity
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undivided heterogeneous type (Addicott et al. 1987).  Note, however, that landscape indices

may differ by 10% or less between each type of area, thus indicating that the study area as 

a whole has a high degree of terrain and vegetation diversity and juxtaposition.

7.3.2 Snow Leopard Utilization of Core and Non-Core Areas

A comparison of snow leopard bedding sites with respect to spatial measures for core and 

non-core locations indicates some significant differences in the utilization pattern which 

appears to reflect differences in availability between the two parts of the snow leopards 

home ranges (Table 39-a and 39-b).  Core bedding sites were up to 250 m further from 

alpine grassland and subalpine shrubland, and a similar distance closer to linear features, 

mixed shrubland, and tree cover types (Table 39-a).  Other differences were detected, but 

these generally involved distances of 30-50 m or less, which are unlikely to be biologically

important.

Snow leopards tend to select bedding sites in areas with greater richness of landform and

vegetation types, and sites that are more diverse and fragmented than those available by 

chance within the study area (Table 40).  However, actual differences in mean values 

between snow leopard locations and random sites are relatively small, presumably 

supporting the contention that the Langu Valley offers prime habitat for snow leopard.

7.4 Habitat Classification Using Discriminate Function Analysis

Discriminant function analysis (DFA) was used to determine which habitat parameters could

best be used to classify radio-located snow leopard sites into one of two groups, core or 

non-core locations.  Discriminant analysis identified 9 factors from among the various 

habitat parameters investigated as the most effective predictors (significant at P < 0.05) of

core/non-core area membership (Table 41).  These were reduced to a model with 5 factors 

which most accurately and efficiently classified snow leopard sites according to core or non-

core areas (Table 42).  This model had a Wilk's Lambda of 0.459, with the variables 

elevation, distance to ridge and potential travel route, and the distance to smooth terrain

contributing most significantly to site discrimination. Using a random subsample of 110 

snow leopard locations (20% of the all locations), this model correctly classified 83% and 

95% of core and non-core sites respectively (Table 43).  These variables could easily be 

Table 39-a: Comparison of selected habitat features for snow leopard core and non-core 
home range locations
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Habitat Parameter a
Core Locations 
 (n = 287)

Non-core 
Locations
 (n = 306)

Test Statistic b

Mean Std.
Error

Mean Std.
Error

t-value U and P2

Landform:

Dist to landform edge c 37.2 2.1 42.2 2.8 0.99 ns

Dist to moderately broken
terrain (LF-2)  c

139.2 8.7 176.2 8.9 -2.95 **

Dist to very broken terrain
(LF-3)

166.7 8.4 179.1 10.5 U = 42710 ns
P2 = 0.33

Dist to smooth terrain (LF-
4)  c

127.3 6.6 63.8 4.2 5.71 ***

Dist to cliff (LF-5) 45.4 4.6 52.7 4.4 -1.16 ns

Dist to linear feature 200.9 10.9 566.9 23.0 U = 70028.0 ***

P2 = 156.93

Dist to DNOT2 167.2 9.5 203.5 9.2 -2.73 **

Dist to DNOT3 185.4 8.6 209.2 11.3 0.50 ns

Dist to DNOT4  c 152.8 6.9 88.3 4.9 6.11 ***

Dist to DNOT5 90.4 7.4 88.7 6.1 -0.18 ns

Dist to DNOTLIN 215.1 11.2 590.1 23.0 U = 64328.0 ***  

P2 = 168.15

Vegetation:

Dist to vegetation edge 44.0 2.7 49.3 2.6 1.41 ns

Dist to Barren type 40.5 4.2 37.9 3.8 0.46 ns

Dist to Mixed Shrub 44.9 4.3 290.4 23.8 U = 63093.5 ***  

P2 = 86.69

Dist to Subalpine Shrub 402.4 16.9 196.2 12.9 U = 24794.0 ***  

P2 = 84.44

Dist to Alpine Grassland 1003.3 21.9 790.6 32.9 U = 32602.0 ***  

P2 = 29.42

Dist to Tree type 195.9 8.1 587.9 28.6 U = 68291.0 ***  

P2 = 136.76

Dist to DNOTBA 75.9 6.6 68.2 5.9 0.87 ns

Dist to DNOTMS 70.2 5.9 371.8 28.3 U = 35026.0 ***  

P2 = 109.40

Dist to DNOTSA 435.9 16.8 260.4 14.8 U = 18887.0 ***  

P2 = 54.18

Dist to DNOTAG 1003.3 21.9 848.8 32.8 U = 32602.0 ***  

P2 = 17.62

Dist to DNOTREE 217.1 7.9 601.7 28.9 U = 59821.0 ***  

P2 = 123.42

Table 39-b: Comparison of selected habitat features for snow leopard core and non-core home
range locations (continued)
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Habitat Parameter a
Core Locations
(n = 287)

Non-core
Locations (n =
306)

Test Statistic b

Mean Std.
Error

Mean Std.
Error

t-value U and P2

Elevation (m) (ELEV) c 3310.6 18.1 3714.8 25.5 U = 67118.0 ***

P2 = 125.47

Slope (degrees) (SLOP) 43.8 0.7 42.6 0.7 1.23 ns

Aspect (degrees) (ASP) 160.4 50.8 154.2 51.1 U = 45586.0 ns
P2 = 0.64

Dist to ridge (RIDIS)  c 118.9 6.1 200.8 9.4 5.57 ***

Dist to major ridge
(RMAJDIS)  c

312.4 16.4 763.6 34.4 8.78 ***

Dist to minor ridge
(RMINDIS)  c

604.9 18.1 814.5 22.9 5.84 ***

Dist to linear landform
feature (LINDIS) 

202.6 10.8 568.1 22.9 70376.0  ***

P2 = 161.11

Dist to travel lane
(TDIS)  c

328.2 12.9 1063.8 33.3 22.76 ***

Dist to bluff (BLUFDIS) c 938.7 26.1 1106.1 43.6 1.41 ns

Distance to  river or
stream (RIVDIS)

379.9 15.3 802.3 27.6 11.26 ***

Dist to  confluence
(CONDIS)  c

1977.3 80.8 1713.3 71.1 -2.88 **

a Dist = distance to nearest specified feature in meters.  DNOT = distance to specified type when
located within the same type

b Two sample t-test value, unequal sample size; Mann-Whitney U statistic and P2 approximation

* = P # 0.05, ** = P # 0.001, *** = P # 0.0001, ns = not significant

c Variable transformed to meet homogeneity of variance requirement
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Table 40: Landscape ecology indices for snow leopard and random locations

Landscape
Index  a

Snow Leopard
Locations
(n = 593)

Random Locations
 (n = 1096)

Test statistic b

Landform Veg Landform Veg Landform Vegetation

Relative
Richness
Index 

0.59 0.57 0.50 0.50 -11.43  *** -8.34  ***

Diversity
Index 

0.63 0.55 0.53 0.48 -11.32  *** -8.36  ***

Dominance
Index 

0.36 0.35 0.40 0.37 U = 300460  * -1.49  ns

Fragmentation
Index

0.52 0.46 0.42 0.39 -11.05  *** U = 389488.5 ***

NDC Index 0.51 0.57 0.44 0.50 -10.07 *** -8.33 ***

CVN Index 0.65 0.54 0.56 0.49 U = 391847.5

 ***

U = 369701.0  ***

BCM Index 0.75 0.66 0.65 0.59 U = 424287.0 

 ***

U = 397516.5  ***

a All indices are standardized according to the scale 0 (low) to 1.0 (high).  See Appendix A-9 for
formulae

b Two-sample t-test value, unequal sample size (pooled variances, df = 1094); Mann-Whitney U
statistic provided when variables remain non-normally distributed after transformation
* = P # 0.05, ** = P # 0.01, *** = P # 0.0001, ns = not significant

applied to other areas within snow leopard range in an effort to identify potential core zones 

for other populations.  This model violates the assumption of multicollinearity, as indicated 

by the fact that the travel lane variable coefficient value exceeds 0.7, indicating 

autocorrelation with one or more of the other model variables.  In this case, it is probably

correlated with the variable "distance to the nearest ridge", a component of travel lanes 

along with stream and riverbeds, riverine bluffs, and other linear landscape features.  The 

ridge variable is retained in the model because the limits (width) of a travel lane may be 

difficult to apply consistently between different observers.  Capen et al. (1986) 
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Table 41: Habitat site factors that best discriminate between core and non-core areas of 
snow leopards in the Langu Valley

Habitat Variable Coefficient F Value Significance

Elevation -59.426 6.316 0.012

Distance nearest river or stream 6.478 6.035 0.014

Distance to nearest ridge -6.705 36.277 0.0001

Distance to nearest potential travel
lane

-31.832 356.975 0.0001

Distance nearest confluence 0.002 5.688 0.017

Distance nearest moderately
broken terrain

-0.022 5.963 0.015

Distance nearest subalpine shrub 1.794 4.956 0.026

Distance nearest alpine grassland 4.421 13.245 0.0001

Distance nearest tree vegetation
type

-5.913 33.752 0.0001

R2 = 0.598

demonstrated the best approach is to validate models with independent data which vary in 

time, space and along habitat dimensions.  A final word of caution: discriminant function

analysis is better used for exploration than as an inferential tool (Williams 1983).  Williams 

et al. (1990) reported strong bias in classification rates when group sample sizes were small 

and overlap among groups was high.  For this reason, I ensured that the total number of 

samples per group was at least twice the number of variables measured. 
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Table 42: Discriminate function model for classifying between core and non-core areas 

Habitat Site
Factor

Function 1 Function 2 Pooled
within-group
correlation

F value Significance

Elevation 761.268 752.412 0.496 139.064 0.0001

Distance to
ridge

17.262 16.561 0.202 23.043 0.0001

Distance to
Travel Lane

0.545 -2.115 0.834 393.627 0.0001

Distance to
major
confluence

14.802 15.286 -0.085 4.091 0.044

Distance to
smooth terrain

6.314 6.399 -0.216 26.390 0.0001

Wilk's Lambda = 0.459; F-statistic = 112.24; df 5,477; Probability = 0.0001

Table 43: Number of resting sites classified as core and non-core habitat for 
snow leopard using discriminant function analysis

Predicted Group
Total

Actual
Group 

Core Non-Core

Core 50 (83.3) 10 (16.7) 60

Non-Core 3 (6.0) 47 (94.0) 50

Note: Figures in parenthesis indicate percent sites which
classified correctly and incorrectly 
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7.5 Discussion

I examined daytime habitat use as opposed to that used across the full 24-hour period 

(Beyer and Haufler 1994).  Emphasis is thus on day beds and loafing sites, rather than 

habitat directly associated with hunting or travelling, although snow leopards may rest close 

to hunting areas or the travel lanes used to move between different parts of their home 

range.  Different utilization and preference patterns may be associated with other 

behavioural activities.  To this end, Harris et al. (1990) recommended that active fixes only 

be used to analyze an animal's movement pattern or habitat utilization when foraging. 

Interestingly, most snow leopard kills were associated with smooth-surfaced terrain and 

alpine grassland or subalpine shrub -- sites shown as being significantly under-utilized for

daytime bedding.  Radio-tagged snow leopards showed a strong preference for bedding on 

cliffs or in steep broken and rocky terrain, often close to ridgelines, stream-beds and other 

linear features used for travelling about their home areas.  A third or more of all daytime

locations were situated within a potential travel lane, and monitored snow leopards showed 

a strong preference for being close to a landform or vegetation edge.  Maehr and Cox 

(1995) reported that 96% of Florida panther locations (N = 14,548) they tallied over a 5-

year period were located within 90 m of a preferred cover type.  Movement is often easier 

along the crest of a ridge than the base of a cliff and along the edge between shrubland and

grassland.  In the study area, ridges provided the primary means for moving rapidly 

through terrain heavily dissected by cliffs, gorges and ravines.  Since there was no 

elevational difference in bedding sites between the seasons studied, it is unlikely that habitat 

use varies seasonally, at least for this snow leopard population.

The preference for steep-sloped, rocky areas for bedding is similar to that reported for 

bobcats studied by Anderson (1990), who used discriminant function analysis to correctly

classify 88% of day-time sites into loafing and random sites.  What benefits might accrue to

those snow leopards which regularly utilize steeply broken terrain or cliffs for diurnal 

loafing?  The snow leopard's protective coloration makes it extremely difficult to distinguish

when standing motionless against a rocky background; such well-developed camouflage 

must increase the cats' stalking ability, while escaping the attention of humans who might

otherwise kill it.  Although definitive data are lacking, mortality due to poaching and human

retribution probably far exceeds that of other natural or unnatural causes of death.  Given 

the potential for serious injury in the event of physical encounters between two males, for 
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example, it would be advantageous for individuals to have early warning of the approach of

others.  Cliffs may be selected for the excellent visibility they provide in at least one 

direction.  

McCord (1974) considered that rocky areas provided important physical and physiological

cover for bobcats, and this may hold for snow leopard as well.  He also speculated 

that cliffs were important areas for reproductive and other social interaction.  While F1 selected

a cliff for her natal den-site, little information has been published on the reproductive 

habitat requirements of snow leopard, except that dens appear to be located in rocky areas

(Heptner and Sludskii 1992, Guggisberg 1975).  Maehr et al. (1990) considered day beds 

and den sites as important habitat features in the management of the Florida panther (Puma

concolor coryi).  Natal dens were maintained for about 60 days while kittens were incapable 

of independent travel.  No information is available for how long snow leopard cubs are kept 

in their birth den before being shifted to a new site, but it is likely to be at least two weeks. 

Females need an area with abundant supply of prey that is also secure from human intrusion 

if they are to successfully raise their offspring.  This situation is more likely to occur in 

places where broken and smooth-surfaced landforms are well interspersed.  By contrast, 

heavily broken areas tend to be prey-poor, while expansive open areas are lacking in nearby

escape cover for ungulates (see discussion section of Chapter 9 for more information).  

Many of the mountain ranges within the snow leopard's range are not lacking in terms of 

cliff or broken terrain, so that its availability per se may not be the most significant factor 

in snow leopard distribution and survival.  However, the juxtaposition of such habitats with

alpine bowls, plateaus and less broken areas may be critical, for the latter provide foraging

habitat for large ungulates, whose density may be directly related to habitat quality (Wegge

1976, Schaller 1977).  Without rocky and broken cover, snow leopards (particularly females

with small cubs) would be far more vulnerable to predation from both humans and wolves, 

the latter being primarily associated with rolling plains and uplands (i.e., smooth terrain

landforms).  Large parts of the Tibetan Plateau, including the Changtang region to the

northwest, are mostly unsuitable for snow leopard due to a low blue sheep population, in 

part the result of high baseline elevation and associated low plant productivity (Schaller 

pers. comm.).
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The few studies of habitat use and preference undertaken to date in other parts of snow 

leopard range seem to confirm my findings.  Chundawat (1990a) found that the radio-tagged

male he monitored during late winter used aspect in proportion to its availability, with 37

percent of locations having a northerly aspect, compared to 2.7 percent in my study.  This

individual also showed a very strong preference for using broken terrain with slopes in 

excess of 40°.  Chundawat considered the top of a cliff or ridge as the ideal snow leopard

resting site, especially if it gave the cat a good view of the valley or the mountain slopes

opposite.  More than 32 and 57 percent of locations were within 20 m of broken and very

broken terrain respectively, with only 10 percent being located more than 100 m from a 

broken area.  Working in the same area, but using sign as an indicator of habitat use, Fox 

et al. (1988) found greater utilization of westerly slopes and an avoidance of sites with an

easterly aspect.  Fifty percent of all track sites were located within 5 m of a sharp break in 

the terrain, such as a cliff or riverine terrace bluff.  This substantiates my finding that snow

leopard use terrain edges as orienting features for travelling about their home range.

The overlapping core area used by snow leopard in the Langu Valley contained habitat 

features that conformed more closely with those "preferred" by snow leopard, compared to 

the non-core area (Table 23 and Appendix A-8).  Randomly-sampled sites within the core 

area were significantly closer to an edge, ridge, potential travel lane, linear feature and

moderately broken terrain than other sites sampled within the home ranges.  From a 

landscape ecology viewpoint, core areas were richer, more diverse and fragmented than 

non-core areas.  The core area abutted a large patch of subalpine shrub and alpine grassland

which contained the densest blue sheep numbers in the area (Figure 20, Chapter 9).  Herds 

of more than 20 animals were not uncommon, and one herd of 85 individuals was recorded. 

Herd size in other parts of Nepal averages less than 10-12 individuals (Schaller 1973; 

Wegge 1977; Wilson 1984).  As noted several times before, it is apparent that the Langu 

Valley constitutes prime habitat for snow leopard, given the favourable interspersion of 

cliffs with smooth and less broken terrain, the abundance of large prey, the complete 

absence of livestock and a low level of human disturbance.

Resource selection occurs in a hierarchical fashion from the geographic range of a species, 

to individual ranges within a geographic range, to use of general features or habitats within 

the home range, to the selection of a particular element (e.g., food) within the general 

features (e.g., feeding site).  Criteria for selection may thus vary between levels (Johnson 



130

1980), so that study design and sampling protocol must be carefully evaluated and examined 

for potential sources of bias.  Habitat selection may occur among discrete categories (such 

as landform terrain types) or across a continuum of attributes, such as vegetation cover and

density, elevation, slope and aspect, and the distance to selected habitat features, such as

vegetation or landform edges, ridgelines and other topographic features, and proximity to

escape cover.  Many factors, such as population density, intra- and interspecific 

competition, prey availability and foraging conditions, natural selection, heredity and 

predation, contribute to resource selection (Peek 1986).  Many theories and models have 

been proposed to help explain resource selection, including optimal foraging theory and 

habitat selection models. 

A review of my data indicates several potentially important sources of bias.  Firstly, the 

snow leopard locations were found to be time dependent (see Chapter 6), and habitat 

assessment was subject to potential bias resulting from pseudo-replication.  My study design

followed the second category (Design II) specified by Manley et al. (1993).  With this 

design, individuals are identified and the use of resources is measured for each study 

animal, but resource availability is measured at the population level.  Thus, variation 

between observations in one animal assumes greater precedence over variation between

individuals, so inferences are model-based rather than designed-based (Manley et al. 1993). 

Secondly, the assumption that all snow leopards had unrestricted access to the full range and

distribution of resource units sampled may not necessarily have been valid.  For example, 

social avoidance and marking priorities could have modified movement and thus visitation 

rates to selected resource sites, irrespective of the other functions these sites may have 

provided.  This could especially have been the case in individuals whose residency status 

had not been firmly established at the time of study (Bailey 1993).  Manley et. al. (1993:67)

note that "changes in the density of animals or in the availability of resource units may 

change the underlying selection strategies and the selection indices".  Therefore, statistical

inferences noted in this study are only made with respect to the specific conditions present 

in the study area over the time of interest.  Finally, it is important to recognize that the 

reasons why a particular resource is selected or avoided is not directly revealed by the

estimation of the amount of use or avoidance: controlled experimentation is the only means 

for establishing whether a particular food or habitat type is unattractive or simply rarely 

used. 
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Spatial differences between cat and random locations, or between core and non-core 

locations, may not necessarily infer biological importance, despite means which differ

statistically.  Geographic information systems and computers offer a precision that can be 

both misleading and illusionary.  For example, the mean distance to an area with broken or 

very broken terrain differed by less than 37 m for the core and non-core area; from the

viewpoint of the snow leopard, the additional energy expended in travelling this distance is 

very likely to be negligible.  Furthermore, combining individuals due to small sample size 

may have obscured individual differences in the proportion of land-cover types (Maehr and 

Cox 1995). 

Another and related problem area concerns potential sources of error and bias.  For 

example, error may result from inaccurate habitat or landform mapping, generalized

geographical projection, and from imprecise animal locations due to signal deflection or 

human reading error (White and Garrott 1990).  As noted in the methods section on habitat

utilization (Chapter 3), I chose to lump individuals wherever possible due to a small sample

size.  Use-availability analyses are closely dependent upon how one defines what is deemed 

as being available to the study population.  I introduced some bias by considering all habitat

located within the study area (see Figures 2 and 3) as being available to each of the 5 snow

leopards studied, rather than basing this analysis upon that available within each individual

home range: sample size precluded this except possibly for M2 and F4.  Thus, small sample 

size precluded comparisons between individuals, while it was necessary to lump several 

habitat types into a single category for chi-square analysis (Byers et al. 1984; Neu et al. 

1974).  The pooling of data (Schooley 1994) may have obscured differences between

individuals or sexes, although the animals studied utilized the same area over each of the 

two or three years monitored.  Shifts might have occurred during the summer months, 

which are under-represented in my data-set.  For example, one would expect snow leopards 

to make greater use of the higher elevation areas during summer months, and most high

elevation habitat was located outside the home ranges described in Chapter 6.  However,

incidental observations indicated little evidence for a noticeable seasonal elevational shift in 

the Langu Valley's blue sheep population, probably because habitat loss due to winter snow

accumulation was limited by the steep, southwesterly facing topography of the study area. 

Similarly, blue sheep were not subject to disturbance by humans or their livestock, and 

could thus remain in the more productive low or medium elevation areas. 
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Porter and Church (1987) investigated the effects of environmental pattern upon habitat

preference analysis and concluded significant effect due to landscapes with aggregated 

patterns (i.e., areas where habitat types and boundaries tend to occur in relatively large and

contiguous strips or patches).  Significantly less error was detected using regularly 

distributed or small habitat patches, with cell size being the critical component.  Precise

locations are especially important when habitats have a patchy distribution in relation to

locational error (Nams 1989).  Samuel and Kenow (1992) recommended subsampling a

minimum of 50 random points from the error distribution of each animal's location to 

reduce variability associated with habitat misclassification.  However, this is impractical 

unless one has a large data-set and access to sophisticated computer programming 

capabilities.  White and Garrott (1986) demonstrated that the power of the Chi-square

goodness-of-fit test to detect habitat selectivity decreased with increased habitat complexity 

(i.e. heterogeneity of habitat), reduced precision of triangulation bearing and lowered 

sampling effort.  Since the power of the Chi-square test can be improved by increasing the

number of locations, data from all individual snow leopards were lumped, whenever 

justified.  However, this obscures any difference between individuals or sex.  In addition, 

error polygons for most snow leopard locations were delineated in the field, concurrent with

bearing measurement.  Location sites (and consequently their topographic configuration) 

were almost always visible, so that more realistic geographically delimited signal polygon 

error boundaries could be drawn, and the geographical center taken as the animal's most 

likely location. 

A potentially more important factor involves the graininess of the habitat and landscape

components examined (Schulz and Joyce 1992), particularly in light of the close association

between snow leopard locations and distance to the nearest edge.  Thus, more than 74 

percent of daytime locations were located within 50 m of a landform edge, and a similar

proportion (72%) were within the same distance of a vegetation edge -- indicating a high

potential for habitat misclassification resulting from imprecision associated with fixing 

locations of the study animals.  A sensitivity analysis indicated that misclassification error 

due to graininess increased substantially at cell sizes of 100 m or more (Figure 17).  Thus,

locational classification errors are about 6 percent for a grain cell size of 15 m x 15 m,

increasing to 18 and 20 percent for cell sizes of 75-100 m on a side.  Additional graininess

dramatically increases the error rate, until it is 38 percent (vegetation) and 46 percent 

(landform) for a 250 m x 250 m cell size.  Recommendations for grain size relative to the 
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home range size of three target species (spotted owl, Strix occidentalis; marten Martes

americana; and Douglas squirrel, Tamiasciurus douglasi) range from 1 - 25% (Laymon and

Barrett 1986, Laymon and Reid 1986), but few spatial evaluations of the effect of grain size 

on habitat have been undertaken (Schulz and Joyce 1992).  In my study the smallest habitat

polygon mapped was 3.2 ha.  The snow leopard radio-location error polygons averaged 

6.17 ± 0.264 SE (N = 582) hectares in size, a value within the one percent limit (25 ha)

recommended for the spotted owl, a species with a smaller home range and differing 

foraging or ecological requirements than the snow leopard.

Nams (1989) reported on the effects of radiotelemetry error on sample size, bias and 

distortion when testing for habitat selection, noting that when telemetry error exceeded 1.5

times average habitat size, the required sample size increased immensely.  He (1989:1633)

wrote, "Furthermore, if different habitat types have different sizes, or if habitats are not

distributed randomly, then the bias is not the same for each habitat.  Therefore, if efficiency 

is low, one cannot test for selection of individual habitats, or compare various habitats, 

unless the bias is removed."  In my study, vegetation polygons averaged 31.8 ha (minimum 

= 0.61; maximum = 1,858.7; N = 220) in size, while landform types averaged areas of 

19.4 ha (minimum = 0.15; maximum = 703.4; N = 360).  Thus, landform and vegetation

polygons were, on average, 3 to 5 as large as radio-location error polygons -- beyond the 

critical value Nams found to adversely bias chi-square test efficiency.  However, while he 

noted that habitat dispersion had generally little effect on the Chi-square test efficiency, he

concluded that special problems arose whenever animals used edges like snow leopards.  

Nams offered two solutions to this problem: (1) either remove all records whose error 

ellipse encompasses more than one habitat type; or (2) use a special habitat designation for 

any location within a certain distance from a habitat boundary.  Neither solution is practical 

nor appropriate to the objectives of my study, since field observations consistently 

confirmed the snow leopard to be an "edge species".  Given the extremely fragmented 

nature of both landform and vegetation in the study area, such classification error should 

have been reasonably random across the entire data-set.
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Figure 17: Effect of grain cell size on accuracy of habitat classification
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Checking a frequently visited rock-scent along a permanent sign transect

©  Darla Hillard



135

CHAPTER 8 SOCIAL INTERACTION PATTERNS AND COMMUNICATION

8.1 Sociality and Land Tenure Pattern

Although the radio-tagged snow leopards utilized a common space, they were separated

temporally, thus confirming the species' essentially solitary social structure.  Linear 

distances between snow leopards on the same day averaged between 1.9 and 3.2 km (Table 

44), with a majority of snow leopard locations being within 2 km of another individual 

(Figure 18).  No significant difference was detected in distance between the same or 

different sex (Kruskal-Wallis = 203.00; df 198; P > 0.389).  Male to male distances are 

based largely on data gathered prior to the capture of F1 and F2; female to male distances

primarily represent (a) interactions between M2 and F1 after the mating season, while F1 

was pregnant or raising cubs, and (b) interactions between M2 and F2, during the period 

that F2 achieved her independence, but prior to her reaching adulthood.  Only a few same-

day records of M3 were tallied before I lost radio-contact with him.  The female to female

records represent the first 14 or so months of F2's independence and a period during which 

F1 was raising her cubs (i.e., less than one month of age, and then ages 5.5 - 12 months).  

The slightly larger distances between males and females compared to male to male or 

female to female may therefore reflect the maternal status of F1; like other solitary felids 

she might have been intentionally avoiding close contact with male snow leopards.  In 

addition, males M2 and M3 could have been siblings and may therefore have been highly

tolerant of one another. 

The only association observed between the radio-tagged cats involved F1 and her presumed

daughter F2: they travelled together for four days, starting on 14 May 1984.  I have no 

evidence to indicate that they were travelling together when I first captured F1 45 days 

earlier.  During their 4-day  association, they travelled about 3.5 km (straight-line distance

only), resting within 200 m of one another during the daytime.  I did not record them 

together for the remainder of the study, with the closest location between this pair being 

about 300 m.  Thus, if related F2 became fully independent in late May 1984, at an age of 

about 22 months.  A month later her presumed mother (F1) gave birth. 
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Table 44: Linear distance between locations of radio-tagged snow leopards on the same day 

Cat Number Sample
Size

Mean Distance ±
Standard Error
(kilometers)

Minimum
Distance (km)

Maximum
Distance (km)

M2 : M3 45 1.93 ± 0.18  0.31 5.51

M2/M3 : F1/F2 55 3.16 ± 0.29  0.31 7.03

F1 : F2 109 2.18 ± 0.17 0.02 7.88

Sample Size = number of times individuals were located on the same day

The only prolonged social contact in snow leopard is that of a female and her dependant

offspring.  We observed no known socialization at a kill, but cannot exclude this possibility. 

Neither were instances of siblings associating or of mating pairs recorded, although this

undoubtedly occurs.  Of 20 sightings, 18 involved solitary individuals, one a female with

12-month old cubs (F1) and one of a female accompanied by a large juvenile.  

While no evidence was found to substantiate territoriality in snow leopard, home range 

tenure appeared to be in a state of flux through at least part of the study period, as noted 

earlier.  Some evidence was found to suggest that fully grown males tend toward home 

range exclusivity with regard to other adult males presumed to be of breeding age.

Little is known about the age at independence: F2 was judged to be about 22 months of age

when she left her presumed mother.  M2 and M3 were already independent at first capture, 

and their age was judged at about 2.5 years.

8.2 Marking Behaviour: a summary

Since little was known about the marking patterns of wild snow leopards (Schaller 1977, 

Mallon 1984), we designed a study to: (1) Define the basic marking pattern shown by snow

leopard; (2) Determine the extent to which snow leopard select specific locations and habitat 
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Figure 18: Frequency distribution of linear distances between male and female snow leopards on the same day

Male/Male Male/Female Female/Female

Distance in km

1      < = 0.5
2      > 0.5 - 1.0
3      > 1.0 - 1.5
4      > 1.5 - 2.0
5      > 2.0 - 2.5
6      > 2.5 - 3.0
7      > 3.0 - 3.5
8      > 3.5 - 4.0
9      > 4.0 - 4.5
10    > 4.5 - 5.0
11    > 5.0 - 5.5
12    > 5.5 - 6.0
13    > 6.0
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features to mark at; (3) Determine if marking occurs at a constant frequency with respect to

time; and (4) Examine the degree to which individuals mark in response to each other.  

Results of the marking studies have been reported by Ahlborn and Jackson (1988), and are

summarized in the following paragraphs. 

Snow leopard markings consisted of scrapes, feces, urine and/or anal scent (often deposited 

on or adjacent to scrapes), scent-sprayed rock-faces, and claw-raked tree trunks.  Snow 

leopard scrapes averaged 24.5 ± 0.28 cm (Std. Error) in length (range 13-38; N = 524) 

and 20.42 ± 0.22 cm in width (range 9-38).  No differences in size were found for scrapes 

made in sand, gravel, rocky soils, snow, or those occasionally made entirely within 

vegetation, in this case primarily grass (ANOVA, P > 0.05). 

Eighty-eight sprayed sites were found in the study area; of a sample comprising 78, the

maximum number of spray-marks found at one site was 7, but most sites (81%) had only 1 

or 2 scent-spray marks present.  Boulders or rock outcrops comprised nearly 86 percent of 

the feature marked, with the base of a cliff face the remaining 14 percent.  Approximately 

40 percent of sites occurred along riverbeds or riverine terraces.  Solitary (46%) or grouped

(54%) scrape sites were found at 73 percent of the scented rocks characterized.  Snow 

leopard hair was found on 41 of 130 (32%) marks and the odour at about 38 percent of 

these were classified as strong to very strong.  We were able to distinguish scents by their

odour, even after more than 60 days following spraying (during the dry season), indicating 

that longevity for snow leopards must be substantially longer.  Snow leopards typically 

selected overhanging rock faces, orienting scent-marks toward northerly aspects, a 

behaviour that enhances sign longevity by sheltering scent from the prevailing weather 

(Ahlborn and Jackson 1988).  

Dimensions of rocks scent-sprayed by snow leopards varied considerably, making it difficult 

to describe a "typical" site on the basis of sign size or placement alone.  Seventy-five 

percent of the marked features stood less than 3 m in height (6.8 m ± 14.7 Std. Dev.; 

range 0.9 - 75; N = 76), and 51 percent were less than 3.5 m in width (18.7 m ± 41.4 Std. Dev.;

range 0.5 - 175; N = 78).  Measurement of the rock face actually sprayed 

varied less widely, and the average height of the sprayed rock face was 1.5 ± 1.1 m (N = 

121), with an average width of 2.0 ± 2.3 m (N = 119).  The height of the spray mark 

above ground level averaged 78.7 ± 12.5 cm (N = 132), while the length and width of the 
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spray-mark averaged 16.6 ± 1.0 cm and 9.8 ± 7.5 cm respectively.  When a rock was 

sprayed in more than one place, the average distance between separate spray-marks was 

28.2 ± 15.6 cm (N = 82).

Observations of sign and marking activity along the four permanent transects which bisected 

the core study area (Figure 19) suggested that a snow leopard marked in response to sign 

left by another individual (Ahlborn and Jackson 1988).  Scraping (including new scrapes 

and rescraping of existing marks) was the most abundant form of marking behaviour,

constituting 77 percent of the change in all types of sign observed along the 4.9 km 

repeatable transect.  About 55 percent of all sites were found to be remarked during the 

first six months of observation.  While sites with solitary scrapes were more common, only 

15 percent of the 1,134 scrapes catalogued occurred singly (Ahlborn and Jackson 1988).  

On average, the typical site contained 2.8 scrapes, with a range of 1-24.  While a total of 

235 scrapes per kilometer was tallied along a riverine bluff transect, the average scrape 

density was 28/km along transects sampled "one-time" and 72/km along repeated transects

which bisected the core area. 

Forty-three percent of all scrapes observed along the repeated transects resulted from the

rescraping of a pre-existing scrape; furthermore, most scraping occurred at sites that 

appeared to have been repeatedly used over long periods of time by snow leopard. 

Approximately 55 percent of all sites were remarked at least once or more times over the 6

month period that they were monitored during the first year of sampling.  Rescraping 

occurred most often at the more visible -- typically new or fresh scrapes -- further 

suggesting that animals were attempting to "overmark" existing sign with that of their own.  

The relative visibility, and thus age of scrapes, appeared to be an important factor in the

selection of marks for rescraping (P2 = 49.79, df = 4, P < 0.05).  Scrapes in the more 

visible classes (3 and 4) were rescraped significantly more (P < 0.05) than those in low 

visibility classes, while the oldest scrapes were avoided (P < 0.05).  Since high visibility 

scrapes are also the freshest (i.e. those made most recently), they are presumably more 

likely to contain viable chemical information (Muller-Schwarze and Silverstein 1979; Brown

and MacDonald 1985).  Measurements of both new and remarked scrapes were recorded 

over two years.  The greatest length and width of remarked scrapes (N = 176) was 

significantly greater than that of new scrapes (N = 187) (t = 3.29; P < 0.001 and t = 

2.81; P <0.005, respectively).  However, the difference between the two scrape mean
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dimensions amounted to about 1 centimeter and thus appears to be of no practical or 

biological significance. 

Scraping occurred on about 86 percent of the occasions that a snow leopard was known to 

have visited a particular transect.  During a typical visit, approximately 2.8 new scrapes and 

2.1 rescrapes were recorded.  New sites were established on 50 percent of the times that a 

cat was known to have visited a transect, for a marking rate of about 0.8 sites/visit.  Of the 

sites which were revisited and marked, 73 percent were classified as relic, 17 percent as

non-relic and 9 percent were sites established during the monitoring period.  The overall 

decline of scraping activity during spring and early summer resulted in a corresponding

deterioration of scrapes (and sites) in the higher visibility classes.  

The density of feces along the repeated transects averaged nearly 16 per km, with 84 

percent occurring at a scrape site, and most of these (74%) were associated with a relic or

repeatedly utilized site.  Four percent of all feces were deposited in a scrape depression or 

on its mound, while another 3 percent of scrapes were marked with "token" feces, defined 

as small feces containing much less than the normal amount of fecal material (Schaller 

1967, Sunquist 1981).  The pattern of feces accumulated along transects indicated a strong

tendency for snow leopards to deposit fecal material at scrape sites rather than randomly 

along their travel route.  Urine and/or anal gland marking of scrapes was detected at 33 of 

181 scrapes (18%).  Because the presence of urine was difficult to detect at many scrapes, it 

is probably more common than these data would suggest.

Use-availability analysis indicated a significant preference among snow leopard for scraping

atop promontories or at the base of cliffs, along riverine bluffs, on knife-edge ridges, and in

moderately to distinctly broken terrain.  Areas with poorly defined terrain or lacking in

topographic edges were significantly under-utilized.  The disproportionate use of vegetation

types for scraping seems to reflect their association with a particular landform condition.  

Thus, alpine grassland and subalpine shrub (most often associated with a smooth slope) 

were marked significantly less than expected by chance alone, while barren areas (like a 

cliff) or riparian areas (stream-bed or riverine bluff) were used significantly more than 

expected (P2 = 89.4, df 4, P < 0.001).
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The amount of sign differed significantly (Kruskal-Wallis = 26.8, P <0.001) between 

transects classified as confluence, major ridge, ridge or another type.  Confluence transects 

(i.e., ridge-lines adjoining a well-defined stream and river confluence) had the highest 

density of sign, followed progressively by a major ridge, other ridges and transects along a

poorly defined landform edge.  The differences were significant (P < 0.05) for all 

categories except between a ridge and other transect types.  Sign transects at major drainage

confluences consistently supported more sign than non-confluence locations.

Finally, transects located within the overlapping inner core area contained significantly 

more sign than those transects located in similar terrain, but within a non-core area

(Mann-Whitney U = 151, P <0.002).  Typically, the core area transects supported about 4 

times as much sign (scrapes, feces, and scent-sprays) as found along transects elsewhere in 

the snow leopards' home ranges.

8.3 Discussion

Sociality and Land-tenure:  Radio-tracking confirmed that snow leopards have an essentially

solitary social structure, as first suggested by Schaller (1977).  In this regard they are 

similar to common leopard (Bailey 1993, Schaller 1972) and puma (Hornocker 1969;

Seidensticker et al. 1973).  Same day distances between male snow leopards averaged 1.9 

km, compared to 2.2 km between females and 3.6 km between the sexes.  Although 

spatially overlapping to a large degree, use of the core area by the snow leopards studied 

tended to be temporally separated.  Sweanor (1990) reported similar temporal separation 

among puma with overlapping areas.  Bailey also found that common leopards with adjacent

overlapping home ranges were seldom located closer than 1 km to each other, regardless of 

sex, social status or season of the year.  In addition, males were generally spaced further 

apart (X– = 5.4 km) than adult females (X– = 2.6 km), and males and females were spaced 

further apart (X– = 4.0 km) than females.  Spacing increased during the wet season when 

impala, the main prey species dispersed away from permanent water-holes.  

Despite extensive range and core area overlap, associations between different individual 

snow leopards outside of mating and females with cubs are obviously quite rare.  The only 

other association observed during this study involved a single occasion when two females 

(F1 and F2) spent four days together.  They may possibly have been sharing a kill.  Groups 

of up to 5 "adult-sized" snow leopards have occasionally been reported from Ladakh by
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local people (Chundawat pers. comm.); these probably also represent temporary associations 

of a female, her nearly or recently independent cubs, and possibly a resident adult male.  It

would be interesting to know if such groupings were associated with a kill or not.  Heptner 

and Sludskii (1990) describe an incident in which five snow leopards belonging to a single

family group attacked a wild pig.  No specific information was gathered on adult male and

female interactions during my study, but judging by the paucity of pairs of adult-sized

pugmarks observed, such associations are likely short-lived.  Bailey (1993) found that most

associations in common leopard lasted only one day, although one resident pair remained

together for a 5 day period.

Conclusions regarding both home-range and land-tenure in snow leopard are clearly

compounded by my small sample, the uncertain breeding or social status of the radio-

collared males, and the relatively long time that they used a common area.  All tagged 

leopards met with the residency criteria assigned by Hemker et al. (1984) to the puma

population they studied.  Dispersal usually occurs soon after the offspring have become

independent of their mother, estimated at around 18-22 months of age in snow leopard (this

study), but earlier in common leopard (Bailey 1993; Sunquist 1983).  Male M2 used a well-

defined range until he was about 4 years old, when he lost his radio-collar.  This snow 

leopard showed some evidence of becoming reproductively active during the period he was

studied.  Male M3 resided in the same area until he was over 3 years old, when I lost 

contact with him.  The land tenure system of snow leopard must remain somewhat unclear,

given my small and potentially biased sample.  More research is needed to determine if 

males maintain more exclusive ranges in areas with less abundant prey or areas which are 

not as spatially broken by cliffs and other rocky terrain. 

Several factors may explain the high degree of overlap between males and the lengthy 

residence observed among this young male snow leopard cohort, including the possible 

death of a resident male or high prey abundance in the study area, which may have 

permitted offspring to remain within their mother's range for an extended period before

dispersing.  Studies of tiger in Nepal's Royal Chitwan National Park have clearly indicated 

that land-tenure is in a state of constant flux (Smith 1984 & 1993; Smith et al. 1989; 

Sunquist 1981); the same situation may exist in snow leopards, but the species' precise 

land-tenure pattern will remain uncertain until a long-term study has been conducted.  Little

information on the subject is even available for the common leopard, a far more widely

distributed and studied species.  Norton and Henley (1987) estimated range overlaps of 10-



144

57 percent, but home ranges for the 3 adult male common leopards studied appeared to be

unstable and undergoing change, with the apparent displacement of the oldest individual.  A

combination of exclusive home ranges, mutual avoidance and scent-marking has lead several

investigators to suggest territoriality exists in male common leopards (e.g., Schaller 1972,

Hamilton 1976, Bertram 1982), but this may better be termed a form of breeding 

territoriality in which resident males have exclusive rights to breed with one to six resident

females (Bailey 1993).  The latter researcher offered valuable insight into the land-tenure

system of Panthera pardus, concluding that vacancies in the home range mosaic of resident

leopards are quickly filled by either subadults already in the area or by animals migrating 

into the area from elsewhere.  Male land tenure appeared to be based on prior use, while 

access to high-quality and prey-rich habitat needed to successfully rear young influenced the

female land-tenure pattern.

Two common features in the spatial relationships of resident male common leopards were

reported by Bailey (1993): firstly, home ranges were not maintained to the total exclusion 

of neighbouring resident males, and secondly, older resident males shared a greater 

proportion of their home ranges with younger (subadult) resident male leopards.  Noting 

that male adult leopards never appeared to associate with other adult males, Bailey 

(1993:250) wrote, "Knowledge of each other's home range boundaries and core areas of

intensive use probably contributes to a stable, peaceful society of solitary leopards.  The 

spatial and temporal relationships among leopards can thus provide valuable insight into 

their social organization."  Vacancies in the mosaic of home ranges in his two study areas 

were quickly filled by other individuals.  Thus, land tenure among the common leopard

apparently insures certain rights, including offering resident males exclusive breeding rights, 

for no known subadult or transient males associated with females long enough for them to 

breed with her.  Bailey concluded that only resident and older males associated with females

often and long enough to breed.  Successful occupancy of an area and the social status

apparently needed to maintain that occupancy ensured the owner's right to breed.  Land 

tenure in males appeared to be based on prior use.  Thus, the primary right associated with 

land tenure among male leopards appeared to be access to, and successful breeding with,

resident adult female leopards.  The area occupied by resident males was much larger than 

that needed to obtain sufficient prey and encompassed the home ranges of as many as six

females.  I was not able to determine how much of F1's home range overlapped with that 

of another adult female and her single cub whose pugmarks were occasionally sighted in the
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same area.  Bailey found that resident adult female home ranges overlapped considerably 

with each other.

Emlen and Oring (1977) first suggested that female reproductive patterns, especially 

receptivity, were important for appreciating the extent of male competition over access to

females.  They theorized that there is little potential for individual males to monopolize 

multiple females if those females are sexually receptive in unison, as is the case for snow

leopard (Rieger 1984).  After reviewing the literature, Caro (1994:77) concluded, "The 

period over which females are receptive and how they are distributed in space therefore 

affects many aspects of male competition, including body size, weaponry, social relations 

and ranging behaviour."  Variations in social systems would be expected to occur as a result 

of differences in the dispersion of critical resources, the availability of mates, or other

ecological constraints.  Lynx is another species that shows a strongly seasonal estrous and

resulting narrow period of sexual receptivity (Ognev 1935; Sunquist, pers comm.).  Studies

have indicated that males may either hold an exclusive territory or move and mate over a 

wide area shared with other males (Bailey et al. 1986).  Heptner and Sludskii (1992) report

instances of a receptive female being accompanied by as many as five or more male lynx. 

Time sharing of common space has also been shown in puma (Hemker et al. 1984), 

bobcats, Lynx rufus (Kitchings and Story 1984), and jaguar (Rabinowitz and Nottingham 

1986) among other solitary felids.  Anderson (1988) monitored bobcat home ranges before,

during, and following the removal of a resident male.  An adjacent male occupied the home

range of another male after it had been removed; he continued to use his newly occupied 

range although its size shrunk and his activities were centered upon suboptimal habitat

following the re-introduction of the same male several weeks later.  Anderson therefore

concluded that the size and location of home ranges and habitat use patterns in adult male

bobcat were likely influenced by the presence of adjacent and overlapping males.  He 

postulated that home ranges were maintained by prior rights, with animals only moving into

areas after they had been vacated.  

Intraspecific communication probably serves several functions: first, it may allow 

individuals to avoid each other and thus separate themselves spatially and temporally 

(Ahlborn and Jackson 1988; Bailey 1993; Ewer 1973; Kitchener 1991; Smith et al. 1989). 

Second, it enables individuals of different sexes to attract each other, which is especially 

critical during the brief courtship and breeding of the species.  As explained below, snow
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leopards evidently use subtle modes of communication to distinguish each other by 

individual, sex, social status and reproductive condition.

Marking Behaviour:  As first reported by Schaller (1977), snow leopards of both sex 

(including subadults of about 1.5 years in age) mark intensively, leaving sign such as 

scrapes, feces, urine and scent-spray in prominent locations.  Scraping and the scent-

spraying of overhanging rock-faces was the most prevalent form of communication observed

during this study.  Favored snow leopard marking sites are promontories, bluff edges and 

rocky outcrops or knolls along sharply defined ridges, particularly in areas of maximum 

overlap between different individuals and near major stream confluences.  Given the snow

leopard's preference for travelling along well defined terrain edges (such as the crest or 

base of a cliff, river-bluff or distinct ridgeline), it is not surprising that sign marking is

concentrated in places where movement is channelled, impeded or directed by a physical

barrier.  Most of these "natural edges" offer an unobstructed field-of-view in at least one

direction.  Koshkarev (1984) suggested that the primary advantage of such a travel pattern 

lay in the greater potential for successful detection and approach of prey.

The snow leopard's mode of communication is well adapted to its social structure and the

environmental conditions at hand.  Most marking occurs during the breeding season and in 

late winter, after the peak snowfall, rather than during the summer when rainfall would 

quickly obliterate scrapes or scent-sprays.  Marking during the mating season enables males

(especially residents) to locate a receptive female during the short period that it is in oestrus 

(1-16 days, see Chapter 4), while marking at other times of year allows for temporal and 

spatial spacing of individual animals.  Scrapes, in particular, tend to be very long-lived in

protected places and areas where there is no disturbance from livestock.  Thus, scrapes 

made beneath a protective, overhanging boulder could be discerned two years later.  

Clearly, most sign deteriorates far more rapidly due to natural weathering, and may last less 

than two months, even where it is not trampled by domestic livestock.

Beside seeking to place them in a prominent place, a snow leopard may enhance its scrape 

by depositing feces within the scrape or immediately adjacent to it.  Snow leopards usually 

use overhanging, protected faces of boulders, rock outcrops and cliff ledges or bases to

scent-spray.  Marking is strongly concentrated in areas where a snow leopard spends a 

majority of its time and where the relative snow leopard density is greatest (i.e., the 

overlapping preferred use or core area).  In the study area, these places were located at or 
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near the confluence of a major drainage.  Mallon (1984) presumably encountered a similar

situation in Ladakh, for he noted that the greatest concentration of sign occurred in the 

bottoms of deep gorges, along the dry streambed.  These observations appear to conform 

with Gosling's prediction that social marking would be most effective if it maximized the

probability of encounter by conspecifics.  Gosling (1982) concluded that the likelihood of 

sign being inspected by conspecifics could be increased by clumping sign at specific 

locations, by ensuring it is placed adjacent to a prominent object or feature, by increasing 

the amount of sign deposited at each site, and by advertizing its presence and making it as

conspicuous as possible.  

Common leopard social marking is described by Bailey (1993), who found they frequently

scent-marked by urine spraying the base of trees, bushes and grass as they walked along 

trails, roads and dry river-beds.  Scrapes often accompanied scent marks, but remarking of

existing scrapes, so conspicuous in snow leopard, was not documented by Bailey.  

However, nearly 80 percent of scrapes were located at conspicuous places along travel 

routes frequented by different leopards, with more sign being located near a trail 

intersection than elsewhere.  Bailey concluded that fecal material left by leopards along such

travel routes represented another form of social marking, although he felt that such 

behaviour was more closely associated with an extremely dry environment. 

Our data is not adequate to establish whether resident animals mark more than non-resident

transients.  Bailey (1993) found marking in common leopards occurred primarily in resident

males, being far more limited among the transient male cohort.  This could offer several

potential advantages to the population at large, including allowing transients and other

newcomers to determine if an area is already occupied by a resident animal, to provide the 

site specific information needed by a transient to avoid a resident, to allow the sharing of 

space, and to enable a resident to direct communication primarily toward its neighbour, thus

better maintaining each individual's territorial boundary.

Rescraping is uncommon in other solitary felids as well, or possibly its frequency has been

underestimated for various reasons.  In any event, snow leopards appear to scrape mark far

more intensively than common leopard, puma, jaguar or tiger (Ahlborn and Jackson 1988,

Bailey 1993, Smith et al. 1989).  Schaller and Crawshaw (1980) noted that jaguars in their 

study area in Brazil vocalized and left less visual or olfactory sign than snow leopard. 

Seidensticker et al. (1973) estimated that puma reused only 12.8 percent of 86 scrape sites
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 in his study area, while Sweanor (1990:121) observed that "Scrapes were usually, but not

always, freshened by the same male."  This investigator found that few female puma 

scraped. 

In my study scraping was found to be 4 times as intensive within the shared core area as

elsewhere, including along the periphery of the snow leopard home ranges (Ahlborn and

Jackson 1988).  Other solitary cat species also tend to concentrate sign in certain places.  

Puma studied by Seidensticker et al. (1973) marked most frequently along the edges of their

territories or in regions of overlap rather than toward the home range centers, but Sweanor

(1990) found males scraped throughout their respective home ranges, not just along home 

area boundaries.  She determined that 23-39 percent of scrape sites were shared by different

males and reported that scrapes were commonly found at kills, along drainage bottoms, 

beside prominent trees, in the saddles of ridges, along ridgelines, near water and in rocky

alcoves.  Jaguar sign was also concentrated within the overlapping use areas (Rabinowitz 

and Nottingham 1986).  Smith et al. (1989) reported that tigers in the Chitwan National 

Park marked recurrently along their travel routes, by leaving scrapes and selectively urine-

spraying certain trees.  Such scent-marking was 5 times higher at territorial boundaries than 

in the middle of tiger territories.  In the Kruger National Park, Bailey (1993) observed that 

most marking occurred "at the periphery of leopard home ranges rather than deep within 

them", although there were fewer marks along roads bordering a natural barrier like a large

river.  Bailey thought this could be due to the reduced likelihood of common leopards

encountering a conspecifics in such a situation.  In the case of the Langu snow leopards, 

such barriers appeared to funnel movements and to contribute to the high intensity of marks

observed at or near a stream or river confluence.  Thus, it appears that most of the marking

observed in the felids mentioned above occurs within areas of common use or the area of

greatest overlap.

In males, marking may also play an important role in reducing the likelihood of a close

encounter, thereby minimizing the likelihood for a fight which could result in serious injury 

or even possibly death to those involved.  Sweanor (1990) documented high mortality from

direct associations: thus, 40 percent of male-male and 12 percent of male-female puma 

contact resulted in mortality.   Smith et al. (1989) presented a model for tigers where an 

odour field signals the risk of encountering a conspecific, thus allowing animals to compare 

the cost of possible encounter with the benefits of using a given area.  They concluded that

concentrating marking in mutually used areas, where the probability of encountering a 
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conspecific is greatest, makes good sense with respect to communication.  The potential for

transfer of information among individuals is maximized, while the effort invested by an

individual in transferring information is minimized.  Ahlborn and Jackson (1988:44) 

suggested that such a marking pattern may constitute "an important prerequisite for the

development and maintenance of an extensively overlapping land-tenure system, as observed

for snow leopards in the Langu Valley."  In areas with a lower snow leopard density or 

where there is less home range overlap, Ahlborn and Jackson (1988) predicted that the 

density of sign within concentration areas would be less and that the distance between 

marked sites greater.



Adult male blue sheep, the primary prey species of snow leopard in the Langu Valley 

as well as across most of its geographic range in the Himalaya and Tibet

 ©  Rodney Jackson
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CHAPTER 9 FOOD HABITS AND PREY SPECIES DISTRIBUTION PATTERN

9.1 Food Habits, Hunting Behaviour and Prey Consumption

Diet: Preliminary analysis of a subsample of 78 scats from the core study area indicate blue

sheep are the primary prey item, with small rodents (voles, Alticola stoliczkanus; murids,

probably Apodemus spp.) and pikas (Ochotona roylei) constituting important supplementary

prey (Table 45).  The presence of other small rodents is interesting given the absence of 

marmot (Marmota spp.) from the study area.  Further study is required to determine if 

there are any seasonal dietary differences in this snow leopard population.  A large 

percentage of prey items could not be definitively identified, possibly due to deterioration of

scats or substantial variation in hair characteristics.  Although blue sheep are the primary 

prey, Himalayan tahr are also an important part of the Langu Valley's snow leopards food 

base.  Field observations confirmed that subadult leopards, weighing an estimated 20 - 25 

kg, can kill a fully grown male blue sheep weighing over 58 kg, indicating that the species 

is able to subdue prey 3 times its own weight.

Kill Frequency, Hunting Behaviour and Feeding Site Characteristics:  Stationary 

consecutive-day locations of the radio-collared animals suggest that snow leopards kill large

prey once every 12.1 ± 1.46 days (standard error, N = 30), with the interval between 

suspected kills ranging from about 3 to 29 days.  The mean number of days spent at a 

suspected kill site was estimated at 2.7 ± 0.15 days (standard error, range 2 - 8 days).  

Since animals were not always located daily, kills may have been made more frequently,

because of some incidents passing undetected.  On the other hand, the assumption that all

stationary locations (with the exception of females with immobile cubs) are associated with

large prey kills may not necessarily be valid.  

Only four snow leopard hunts were observed during the four years of my field study, all of

which ended unsuccessfully.  All but one of the instances occurred during late morning or 

early afternoon.  In one instance, two snow leopards stalked to within 10 m of a widely-

scattered herd of 41 tahr, when one rushed toward a tahr and chased the herd downslope.  

The pair gave up soon thereafter (Shah 1989).  The second instance involved an adult male  
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Table 45: Frequency and percent occurrence of food items in snow leopard feces

Prey Item Frequency of
Occurrence

Percent Occurrence

Large mammals:

Blue sheep 35 34.0

Himalayan tahr 11 10.7

Unidentified 12 11.6

Small mammals:

Cricetid 9 8.7

Murid 9 8.7

Pika 1 1.0

Unidentified 7 6.8

Birds 2 1.9

Plant material 17 16.5

Totals: 103 100.0

snow leopard which stalked a fully-grown male blue sheep from above, then rushed and 

chased it at full-speed down a 15° slope in alpine grassland, before the blue sheep veered

sharply to the right -- a manoeuver that the cat was unable to match and the blue sheep thus

escaped (Ahlborn, personal observation).  In the third incident, an adult snow leopard was

observed for over 30 minutes as it lay in ambush on a small ridge in slightly rolling terrain 

as a herd of 8 blue sheep grazed some 150 m away, slowly moving toward the crouched

leopard.  With the grass shorter than 10-20 cm in height, the cat lacked cover to move any

closer.  The sheep moved downslope when about 100 m from the ridge and darkness 

precluded continued observation, although no kill was observed there the following day.  

The final incident involved an adult male snow leopard which approached a group of 5 blue

sheep (2 females each with a lamb and a subadult male) from upslope.  One female and her

lamb were resting on a large rocky promontory about 30 m high, while the other three blue

sheep grazed just below, beside a deep gully, but hidden from the leopard's view.  The 

snow leopard walked quickly toward the resting female, which saw the predator when it 
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was about 20 m away; she leapt up and ran off with her lamb, followed by the other sheep.  

The snow leopard made no attempt to rush or pursue the sheep, who stopped 50 - 100 m 

away to look back briefly, before quickly leaving the area.  The snow leopard stood on the

promontory and watched as they disappeared into a gully leading toward a series of cliffs. 

Little data was collected on the sex and age composition of snow leopard kills.  Twelve 

fresh, confirmed kills were examined, including 5 involving Himalayan tahr and 7 involving

blue sheep.  All but three of the animals killed (all tahr) were adults, and of a sample of ten

animals, 6 (60%) consisted of males and the rest were females (40%).  Forty-five percent 

of the kills were made in relatively cover-poor, even terrain, with the remainder about 

evenly distributed between cliff, moderately broken terrain and linear landform types (river-

bed and riverine terrace).  All blue sheep and tahr kills I investigated indicated the victims 

had been killed with a throat bite.  After eviscerating the prey, the snow leopards started to 

feed, usually at the rump.  While an adult blue sheep provides sufficient food to keep a 

single cat occupied for 2 - 5 days or more, F1 and her 2 cubs fully consumed an adult 

female blue sheep in less than 48 hours.  No evidence for caching of kills, such as occurs in 

the common leopard (Bailey 1993), was discovered.  Neither were kill remains covered, as

reported for puma (Anderson 1983).

There is circumstantial evidence to suggest that blue sheep are more easily approached from

above and that bachelor male herds are less wary than those containing females and young.  

Not only is the snow leopards' camouflage superb, but they are remarkably adept at 

concealing themselves despite poor cover.  Given their short, muscular limbs, it is 

reasonable to presume that they must have to approach relatively closely before launching 

their final attack, if they are to be successful. 

Kill sites were highly clumped, with over 60 percent (37) of the 61 known or suspected kill 

sites occurring within the inner common core area (Figure 20).  Over 75 percent of these 

sites, as determined from radio-telemetry, were located in a barren area or mixed 

shrubland, and 1.6 percent were in open alpine grassland cover type -- suggesting that most 

kills are made in or a near cover-rich place (Table 46).  Although barren sites are largely 

devoid of vegetation, rocks and terrain features usually offer ample stalking cover.  In 

general, snow leopard appeared to utilize sites in proportion to their availability.  In terms
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Table 46: Habitat characteristics of known or suspected kill sites, based on radio-
telemetry locations

Habitat Feature
& Class

Percent Occurrence (n = 61 locations)

Vegetation Barren Mixed Shrub Subalpine
Shrub

Alpine
Grassland

Tree Types

Site 39.3 36.1 18.0 1.6 4.9

Nearest Type 52.5 34.4 8.2 1.6 3.3

Landform Smooth Broken Very
Broken

Cliff Linear
Types

Site 23.0 21.3 13.1 39.3 3.3

Nearest Type 21.3 26.2 11.5 27.9 13.1

 of terrain, the majority of sites were classified as cliffs (39.3%), with only 3 percent of

suspected kill/feeding sites being located in a river-bed, landslide or other linear landform 

type.  The nearest other landform type tended to be moderately broken (26.2%), a cliff 

(27.9%) or smooth-surfaced (21.3%).  No significant differences between site use and

availability were detected, except that areas more than 125 m from a cliff were significantly

under-represented as kill or feeding areas (P2 = 27.117, df 4, P < 0.002).  Sites with a 

northerly aspect were also significantly under-utilized (P2 = 10.482, df 5, P < 0.03), and 

fewer kills than expected were made at distances of more than 400 m from a travel corridor 

(P2 = 10.375, df 4, P < 0.03). 

9.2 Prey Species Abundance and Distribution

Attempts at censusing large prey were severely hampered by poor visibility due to the 

extremely rugged and broken terrain, as well as the densely covered brushy slopes.  Sign

abundance was used to identify relative blue sheep density according to each major 

landform and vegetation type present.  Pellet group abundance and distribution differed with

respect to type of landform (P2 = 22.243, df 3, P < 0.001), suggesting that terrain is an

important factor in habitat selection by blue sheep.  Moderately broken and smooth terrain
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sites contained higher mean pellet group densities than occurred on cliffs or in very broken 

areas (Table 47).  Very broken areas contained the least amount of blue sheep 

sign,including pellets, beds and tracks.  No differences in pellet group number or 

distribution were detected with respect to aspect.  Pellet density tended to decrease with

increasing slope steepness.  Thus, slopes steeper than 40° had significantly fewer pellet 

groups than slopes under 20°.  The mean number of beds was greatest on smooth terrain 

and slopes of 30-40°(1.2 and 1.4 beds/site respectively), as well as slopes greater than 

50°(i.e., cliffs; 1.2 beds/site), supporting observations that these sites are used for daytime

foraging and night-time bedding respectively.  Actual bed densities on cliffs are probably 

higher than indicated, since their detectibility is reduced by the rocky substrate.  Few beds

(0.2/site) were detected on slopes less than 20° in steepness, indicating gentle slopes were

generally avoided by blue sheep, at least for purposes of bedding. 

Pellet group analysis indicated that habitat utilization differed with respect to the type of

vegetation present (P2 = 11.421, df 3, P < 0.0097), with mixed shrub sites containing

significantly more pellet groups (X– = 1.96) than barren sites (X– = 1.07) (Table 48).  

Although some difference may be attributable to the steeper gradient associated with barren

sites (i.e. places having a greater likelihood for gravity-induced dispersal of pellets), these 

areas are used by blue sheep more for bedding rather than foraging.

Increases and decreases in the relative abundance of pellet groups and beds respectively, 

were noted as the vegetation canopy coverage increased, but such differences were not

statistically significant except when sites with less than 10% canopy cover were compared 

to sites with 26-50% canopy cover.  Presumably, blue sheep are attracted to cover-rich sites

when foraging, but cover-poor sites when bedding.  Pellet-group abundance differed slightly

with respect to the proportion of grass present (P2 = 8.856, df 4, P < 0.0648).  Thus, the 

pellet-group frequency increased with increasing grass composition, with those sites 

supporting less than 10% grass composition containing significantly fewer pellets than sites 

with 11-50% grass cover by composition.  Blue sheep pellet sign was least abundant at sites

with 10 percent or less shrub composition and most abundant in sites with 51-75% shrub

coverage (P2 = 11.184, df 4, P < 0.0246).

These data suggest that the most suitable foraging cover for blue sheep consists of a mixture 

of shrubs and grass, such as occurs in the mixed shrub and subalpine shrub types, while
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Table 47: Blue sheep sign in relation to selected landform types

Parameter Landform Type

Smooth
LF = 4

Moderately
Broken
LF = 2

Heavily Broken
LF = 3

Cliff
LF = 5

Blue sheep Pellet
Groups
  Frequency
  Number ± S.E.

40.0
2.53 ± 0.34

36.4
1.81 ± 0.28

20.7
1.24 ± 0.26

9.6
0.6 ± 0.18

Other Ungulate
Sign
  Number of beds
  No sign types

1.20 ± 0.24
1.98 ± 0.15

0.93 ± 0.32
1.76 ± 0.15

0.97 ± 0.20
1.59 ± 0.21

1.14 ± 0.22
1.29 ± 0.20

Table 48: Blue sheep sign in relation to selected vegetation types

Parameter Vegetation Type

Barren Mixed Shrub Subalpine
Shrub

Alpine
Grassland

Blue sheep Pellet
Groups
  Frequency
  Number ± S.E.

18.0
1.07 ± 0.17

35.2
1.97 ± 0.81

39.1
2.37 ± 0.61

35.7
2.57 ± 1.19

Other Ungulate Sign
  Number of beds
  No sign types

1.32 ± 0.23
1.56 ± 0.14

0.66 ± 0.13
1.76 ± 0.14

1.37 ± 0,42
1.81 ± 0.23

1.14 ± 0.74
1.86 ± 0.40
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cliffs offer the most secure escape and resting cover.  These apparent preferences were used 

to construct a simple habitat suitability model for blue sheep (Figure 21).  Cliffs and areas 

of subalpine shrubland (grass-rich compared to mixed shrub) were buffered out to a distance 

of 200 m, and then overlain to create a mosaic of polygons adjacent and further from 

required foraging and resting habitat.  Areas containing both cover and foraging habitat 

were rated as high, while medium suitability sites were located within 200 m of either food 

or cover, but not both.  Low suitability areas were those sites which were located further 

than 200 m from food and cover, or are situated at elevations above 4,572 m (15,000 feet)

where plant production is very limited. 

Blue sheep densities within the core study area were estimated at 4 to 8 or more 

animals/km2 (unpub. data).  The rolling grassy slopes bordering the bands of cliffs of 

Tillisha Mountain, and abutting the snow leopard's core area supported the highest number 

of blue sheep, with post-rut densities estimated at 15 - 20 animals/km2 (Figure 20).  

Surveys indicated that fewer than a dozen Himalayan tahr roamed within the area primarily

utilized by the radio-collared snow leopards, placing the density of this species at 0.25 

animals per kilometer square or less (unpub. data).  By contrast, some of the substantially 

more heavily forested slopes of the south-side of the Langu Gorge supported up to 10-15

tahr/km2 (K.B. Shah, pers comm. and unpublished data).

9.3 Discussion

Food Habits:  Food habits in snow leopard have been investigated in detail in Ladakh, India 

by Chundawat and Rawat (1994); in Nepal by Oli et. al. (1993), in Pakistan by Blumstein 

(pers. comm.), and in Qinghai, China by Schaller et al. (1988b).  These and other reports

indicate that snow leopards are primarily dependent upon large or medium-sized ungulates, 

such as blue sheep, Asiatic ibex (Capra ibex), markhor (Capra falconeri), and Himalayan 

tahr, as well as sciurid rodents like the Himalayan marmot (Marmota himalayana) and

lagomorphs like the pika (Ochotona spp.).

Although the snow leopard's distributional range is vast, nearly everywhere they are 

dependent upon just a few large ungulates -- blue sheep, ibex and the occasional argali 

(Ovis ammon), as well as domestic livestock (goat and sheep, cattle, subadult yak and  
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horse).  The ranges of ibex and blue sheep, in particular, closely define the limits of known

snow leopard distribution (Wang and Hoffmann 1987).  Thus, blue sheep are the principal 

prey item of snow leopard in northwestern India (Chundawat and Rawat 1994), Nepal (Oli 

et al. 1993, Schaller 1977; this study) and parts of Tibet (Jackson et al. 1994a; Schaller 

pers. comm.).  Schaller (1977) considered most wild high-altitude ungulates except adult 

Asiatic wild ass (Equus hemonius and E. kiang), takin (Budorcas taxicolor) or yak (Bos

grunniens) represented potential prey for the snow leopard.  Information from other parts of 

the snow leopard's range indicate the following medium- and large-sized prey species in

addition to those mentioned above: Tibetan gazelle (Procapra picticaudata), goitered gazelle

(Gazella subguttorosa), Tibetan antelope (Pantholops hodgsoni), serow (Capricornis

sumatraensis), goral (Nemorhaedus goral), wild boar (Sus scrofa), musk deer (Moschus

chrysogaster and M. sifanicus), roe deer (Capreolus capreolus), red deer (Cervus elaphus),

white-lipped deer (C. albirostris), and the young of wild camel (Camelus bactrianus) (Fox

1989; Heptner and Sludskii 1992; Mallon 1984b; Schaller et al. 1994; Zhirjakov 1990; 

Zhirnov and Ilyinsky 1986).  A two-year old brown bear (Ursus arctos isabellinus) was 

killed and partially eaten by a snow leopard in Kazahkstan, but this must be quite unusual

(Heptner and Sludskii 1992). 

One would assume that the snow leopard's diet and annual prey requirements, like that of

common leopard, would be influenced by prey size, abundance and availability, the latter

depending upon prey population density, behaviour and habitat preferences (Bailey 1993). 

Using the estimated kill frequency derived from successive stationery locations (see Section

9.1), an adult male snow leopard (or female without dependent young) would be expected to

kill about 30 adult blue sheep annually.  Assuming an average consumable weight of 37 kg 

for an adult blue sheep (Schaller 1977), a snow leopard would be expected to consume as 

much as 1200 kg of large prey (including meat and inedible body parts, estimated at about 

30%) per annum, or 1.5 - 2.5 kg of meat per day (Jackson and Ahlborn 1984; Wemmer 

and Sunquist 1988).  However, given the relatively large occurrence of small rodent items 

(over 20%) in the diet of snow leopards from the Langu Valley, per annum kill rates of 20 

to 25 large ungulates appear to be more realistic.  By way of comparison, Beier et al. 

(1995) reported that adult puma inhabiting a comparable latitude to that of my study area,

consumed some 48 large and 58 small mammals (medium-sized rodents) per year.  They 

fed for an average of 2.9 days on a single large mammal, a very similar period to the snow

leopards investigated.
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Snow leopard are reputed to kill larger prey relative to their body weight than all other 

felids, except for some puma which prey heavily upon elk (Cervus canadensis) (Packer 

1986).  Even accounting for small prey remains being naturally over-represented in scats

(Floyd et al. 1978), it is curious that these snow leopards devoted so much effort to preying

upon small prey like mice and voles (Table 45).  Skeletal remains confirmed consumption 

of cricetid and murid prey; with a notable scarcity of red fox (Vulpes vulpes) in the study 

area, and the complete absence of marmot, this snow leopard population may simply have

been exploiting the most available alternative and locally abundant small food source 

present.  The significance of marmot (Marmota spp.) and domestic livestock as 

supplemental items in the snow leopard's summer diet has been clearly documented.  

Schaller et al. (1987) found that 29 percent of snow leopard scats collected in the 

Taxkorgan Reserve contained the remains of marmot.  In another part of China, Schaller et 

al. (1988b:190) reported that "marmots (Marmota himalayana) were a staple prey as

important as, and in some places more important than, ungulates".  Importance in this 

context relates to the frequency of marmot items found in snow leopard scats collected 

during summer.  Finally, in the Annapurna region of Nepal, Oli et al. (1993) found that 

snow leopards relied heavily upon Himalayan marmot (Marmota himalayana) during spring

and summer, with livestock and Royle's pika (Ochotona roylei) constituting a substantial

portion of their winter diet when marmots were hibernating and therefore unavailable. 

Besides other marmot species, small prey items include voles and mice (Alticola and 

Pitymys spp.), and hares (primarily Lepus oiostolus and L. capensis tolai).  Snow leopards

also prey upon game birds like the snowcock (Tetraogallus tibetanus, T. altaicus and T.

himalayensis), chukor (Alectoris chukor) and snow partridge (Lerwa lerwa) (Heptner and

Sludskii 1992; Mallon 1984b; Schaller 1977), as well as the occasional mustelid (Oli et al.

1993).  

Similar diet flexibility has been reported for the African and Asiatic common leopard 

(Bailey 1993; Johnson et al. 1993).  Thus, small mammals ranked second in importance to

ungulates in the common leopard's diet from several parts of Africa where the diversity of

medium-sized ungulates is high (Bailey 1993; Hamilton 1976; Grobler and Wilson 1972). 

Johnson et al. (1993) found that Asiatic leopard (Panthera pardus fusca) consume a wide

variety of small, medium and large-sized prey, from pheasants, pika and bamboo rats

(Rhizomys sinense) to takin and sambar deer (Cervus unicolor).

Hunting Behaviour:  Very few hunting attempts were witnessed and consequently, I 

gathered almost no information on this aspect of snow leopard behaviour.  Therefore, it 
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cannot be confirmed if snow leopards are opportunistic predators like the common leopard 

or tiger, taking the most abundant or easily captured prey.  Stalking and ambushing 

appeared to be the common leopard's most frequent hunting strategy (Bailey 1993), and this

probably also holds for snow leopard.  However, there is no evidence to suggest that this

species caches its kills like the common leopard, instead remaining at the kill site and

completing all of the meat. Rock-piles could easily substitute for trees as cache sites, and 

the ambient temperatures are lower and would thus preserve meat for a much longer time 

than under the climatic conditions associated with tropical or subtropical areas.  However, 

tree-caching appears to be an anti-scavenger strategy rather than an attempt to store prey for

future use (Bailey 1993), and prime snow leopard habitat harbors few, if any, scavengers

capable of constituting a threat.  The Langu leopards stayed on a kill for 2.7 days (range 2-

8) on average, compared to 2.4 days (range 1-6) for common leopards studied by Bailey.  

The snow leopard's crepuscular activity pattern would suggest that most kills are made in 

the late afternoon or early morning.  By contrast, common leopards are thought to kill 

mostly at night or late in the evening (Bailey 1993).  Presumably, any benefit accruing from

hunting under the cover of darkness would be offset by the danger of stalking on cliffs and

other precipitous places -- which blue sheep tend to select for nighttime bedding. 

Our data are clearly inadequate to assess whether snow leopard kill more adult males than 

the other sex or age classes available to them, as suggested by Schaller (1977) or Heptner 

and Sludskii (1992).  The latter investigators noted that male ibex were most vulnerable 

during winters with heavy snowfall.  Circumstantial evidence suggests that snow leopards 

may more easily approach male blue sheep groups than herds with females, who are 

especially vigilant when they have lambs present (unpublished data and Paul Wilson, pers.

comm.).  However, whether a particular sex or age class is selected may be more a matter 

of chance, since snow leopards hunt like a tiger.  Usually hunting alone, tigers rely upon

concealment, a slow stalk and a final but short rush, thus making animals in prime health

equally vulnerable to those which are less healthy or younger (Sunquist 1981).  While no 

data exists on hunting success, Heptner and Sludskii (1992), Schaller (1977) and Fox and

Chundawat (1988) have described hunting methods used by snow leopard.  Fox and

Chundawat observed several domestic sheep kills and concluded that the snow leopard's

stalking and killing was essentially consistent with other accounts of the species' use of 

steep cliffs as cover in stalking.  Like other felids, snow leopards probably rely primarily 
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upon sight to detect prey.  Both of the hunting strategies described by Kitchener (1991) for

small cats also apply to snow leopard (Heptner and Sludskii 1992).  In the mobile method, 

the predator patrols its home range until a potential prey animal is encountered, which it 

slowly stalks until it is near the intended prey, at which time it rushes forward to attempt a 

kill.  If the intended prey is not caught within a short distance the cat will desist from 

chasing it further.  The stationary or ambush method involves a predator lying in wait on a 

cliff or among rocks along a trail leading to water, a salt lick or other place visited 

frequently by large ungulates.  By resting within in a rocky outcrop containing pika, a snow

leopard would be offered the opportunity to feed upon this diurnal species.  Blue sheep are

perhaps more likely to be detected from above, such as may occur when a snow leopard is

bedded on a cliff or other rocky elevated site near a suitable foraging area.

Hunting success is no doubt influenced by many factors, among the most important of 

which are likely to be the availability of suitable stalking cover (Sunquist and Sunquist 

1989, Schaller 1972).  Most of the study area offered excellent cover in the form of rocky

terrain, shrubby vegetation or both.  On the other hand, the presence of other kills indicated 

that snow leopards were quite capable of successfully hunting in open, smooth-sloped alpine

grassland areas, with little or no vertical cover of any consequence.  The tendency of snow

leopards to travel along ridges, and other landform or vegetation edges aids the predator in 

its attempts at concealment.  Fox and Chundawat (1988) cite an incident of a snow leopard

moving along a cliff-top near a village, from where it could follow the movements of 

domestic sheep and goats upon which they frequently preyed.  After tying a goat out as 

bait, they observed and described how a male snow leopard carefully approached from 

above, until it was about 40 m away when it walked quickly toward its prey, then running 

at it when 25 m away. 

Schaller (1977) and Fox and Chundawat (1988) found that domestic goats were killed with a

suffocating throat bite.  This was noted for the blue sheep or tahr kills found during this 

study.  Snow leopard are capable of easily killing prey over twice their body weight 

(Jackson and Ahlborn 1988).   Packer (1986) refuted large prey size as the only cause for

sociality in carnivora, citing the preference shown by cougar, leopards and snow leopards 

(all confirmed solitary species) for prey items even larger relative to their own body weight

than found in lions, by far the most social of the large felids.  Packer (1986) placed the 

modal ratio of prey size to female weight for snow leopard at 1.26, but a figure of 1.45 is 

more realistic (given the ability of an adult female to kill fully grown male blue sheep 
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weighing an 50 kg or more).  Modal prey size in felids is most strongly correlated with 

prey availability and vulnerability according to Sunquist and Sunquist (1989).

Telemetry data suggested that the tagged snow leopards killed large prey about once every 

12 days, a rate comparable to that of puma (Ackerman et al. 1986, Hornocker 1970, Shaw

1977).  Bailey (1993) found that African leopards averaged a kill once every 7.1 days and 

6.8 days in the dry and wet seasons respectively.  He suspected, however, that kill rates 

varied considerably with season and between individual, with younger leopards killing more

smaller mammals and fewer impala than older leopards.  Assuming 30 percent wastage, 

Bailey estimated male and female leopards required between 5.4 and 4.3 kg/day of large 

prey respectively; this is nearly twice the consumption rate of snow leopard although they 

live in a colder climate and are not significantly smaller than their common cousin.  The 

figure of 1.5 - 2.5 kg/day for snow leopard cited by Wemmer and Sunquist (1988) also fits

with estimates for consumption rates in puma.  For example, Gunson et al. (1993) found 

that a solitary female puma consumed 2.5 kg/day over a three-month period. 

After making a kill, a snow leopard usually moves the carcass into vegetative or rocky 

cover, where it will remain feeding and resting until all meat has been consumed, unless it 

is disturbed or chased away.  One kill site in relatively dense shrubland had numerous trails 

5 to 20 m in length worn between the carcass and the 5 resting places used by the adult 

female leopard which had killed the fully grown blue sheep.  She remained at her kill for 3 

days in all, shifting her resting place in response to the sun's movement, as well as chasing

avian scavengers away. 

Snow leopards commence to feed on the groin and thigh or rump area in a pattern similar to

that described by Bailey (1993) for the common leopard.  It is not clear if the prey is

intentionally eviscerated, or whether this occurs accidentally as suggested by Bailey for

common leopard.  While intestine and associated viscera are consumed, the rumen content 

is not eaten.  Fox and Chundawat (1988) describe one cat consuming the viscera of a 

domestic goat left out as bait for it.  Observations indicated the Langu snow leopards were 

able to almost completely consume their kills, provided these were guarded from scavengers

like the red fox (Vulpes vulpes), ravens (Corvus corax) or Himalayan griffon vultures (Gyps

himalayensis).  Heptner and Sludskii (1992:306) considered it rare for a snow leopard to

remain near its kill and chase vultures away, noting, "the remains of a kill are usually left

behind, and are consumed by vultures, bears, or wolves."  In other parts of their range, 
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animals may be interrupted or chased away from their meal by humans, in search of 

retribution or simply exploiting an opportunity to have fresh meat (Fox and Chundawat 

1988; Oli et al. 1994).  The tendency of snow leopards to predate upon domestic stock, to 

eat slowly and stay at their kills for five days or more, and the ease with which they can be

dispatched (even by people whose only weapon are stones) no doubts contributes to its 

reputed population decline and the species endangered status.  There are many instances of

surplus killing of domestic goats and sheep by snow leopards in the literature (for example, 

see Fox 1989; Heptner and Sludskii 1992; Jackson et al. 1994 a & b; Mallon 1987; Schaller

1977), a phenomenon also noted in common leopard (Stuart 1986).  Usually this occurs 

after a snow leopard has entered an enclosed livestock pen during the nighttime.  Such 

events lead to concerted attempts at retribution by herders who may lose 5-30 or more of 

their livestock.  Fox and Chundawat (1988) suggested that those snow leopards killed in

retribution for stock thefts may be old or physically incapacitated individuals who are 

unable to catch wild prey.

Prey Species Distribution and Density:  A review of the literature indicates densities of 2.6 

blue sheep/km2 in a population under substantially greater pressure from humans than my 

study area (Wilson 1981).  Winter concentrations of 8.8 to 10.0/km2
 were reported by 

Schaller (1977) at Shey, which is located close to the Langu study site.  However, the Shey

animals inhabit more barren habitat, and must also compete with livestock for forage.  As

noted, domestic herbivores are completely absent from my study area.  Although blue sheep

density varies widely from 4 to 20 animals per km2 within different parts, it is apparent that 

the Langu Valley provides prime habitat for this caprid (Jackson and Ahlborn 1989).  I 

roughly estimated blue sheep biomass at 350 kg/km2, compared to less than 95 kg/km2 for 

the Himalayan tahr (unpublished data), for a total ungulate biomass of about 445 kg/km2. 

Given a snow leopard biomass of between 3.1 and 4.5 kg/km2, the predator/prey ratio 

ranges between 1:98-143.  Jackson and Ahlborn (1984) judged that 150-230 blue sheep 

would be required to support a single adult snow leopard in the Langu Valley, given the 

area's blue sheep age and sex composition and an overall harvesting rate of 13 percent of 

the standing crop.  Under this regime, an adult snow leopard could be assumed to require 

20-30 blue sheep annually.  Assuming there are about 1,000 blue sheep in the study area, it

should therefore be capable of supporting 4-6 adult snow leopards at a 13 percent harvesting

rate.  
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Oli (1994) estimated similar year-round densities for blue sheep (6.6-10.2 per km2) and 

snow leopard (4.8-6.7 per 100 km2) in his study area in the Annapurna Conservation Area 

of Nepal.  This amounts to a snow leopard/blue sheep ratio of 1:114-1:159 on a weight 

basis.  Livestock contributed 34 percent of the Annapurna area leopard's diet, compared to 

66 percent for wild prey (primarily blue sheep, marmot and pika).  Livestock biomass in 

this area ranged as high as 1,700 kg per km2 (i.e. over five times as much as that of blue 

sheep), suggesting that domestic stock is more abundant but probably not as available as 

blue sheep (Jackson et al. 1994b).  Even when large-bodied adult yak and cross-bred cattle 

(36 percent of the total domestic herd) are removed from consideration, the biomass of

livestock in Annapurna exceeds that of blue sheep by 200 percent or more.

Prey populations are ultimately controlled by forage quality, quantity and availability.  Blue

sheep are primarily grazers, preferring various grasses and forbs throughout the year 

(Schaller 1977, Wegge 1976, Wilson 1981).  Shrubs may provide an essential food source 

in areas heavily grazed by livestock (Schaller 1977) or during winter (Roberts 1977, Wegge

1976) when snow accumulation precludes or limits access to grasses or low herbaceous

vegetation.  Snow cover reduces forage availability, impedes movement, mobility and 

habitat selection, increases energy expenditures, and may cause crowding and the 

subsequent overuse of critical winter range.  The generally warmer temperatures and 

increased solar radiation of southerly slopes reduce heat losses and increase snow-melt, 

thereby minimizing thermoregulatory stresses and maximizing access to forage.  This may 

be one reason why blue sheep prefer foraging areas with a southern exposure and gradual to

moderately steep slopes (<35 degrees) during winter and early spring (Wegge 1976, 

Wilson 1981).  Blue sheep tend to utilize the middle slopes of mountain ranges, thus 

avoiding exposure to the colder temperatures that prevail at higher elevations, on ridge-tops 

and in the valley bottoms (Schaller 1977, Wegge 1976, Wilson 1981, this study). 

Escape, resting, bedding and thermal cover is critical for maintaining prey populations.  

Blue sheep rely almost exclusively on steep, broken, rocky terrain as cover to bed, to lamb, 

to escape predators, and to help maintain homoiothermy (Schaller 1977, Wegge 1976, 

Wilson 1981).  In Ladakh, Fox et al. (1988) found that 63 percent of all blue sheep herds

within 50 m of a cliff, while 84 percent of herds sighted were located within 150 m of this

feature.  The mean distance to a cliff was 62 m.  Wegge (1979) reported herd size 

decreased as terrain became increasingly broken and the habitat structurally more "closed".  

He found that, while larger herds and the greatest number of individuals foraged in uniform 
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terrain with gradual slopes (< 20o), smaller herds were generally restricted to moderately 

broken (i.e., structurally diverse) or steep (# 35o) terrain.  Wegge concluded that this was 

due to the selective pressure of predation and the adaptive characteristics of social behaviour

(Estes 1974, Geist 1974, Jarman 1974).  While steeper, more broken terrain may offer less

productive habitat for blue sheep, such areas may well be very important to their overall

maintenance and distribution, especially during winter. 

Females usually lead herds in their retreat from known or potential threat (Wilson, 1981,

Schaller, 1977, Roberts 1977, this study).  The blue sheep's alarm call, a high-pitched 

"chiret", attracts the immediate attention of all other sheep within hearing distance.  In 

terms of vulnerability to predators, small herds are likely more at risk than large herds. 

Incidental field observations suggest that all-male herds are less vigilant than herds with 

adult females and young, which are also more likely to flee upon an alarm call.  This leads 

to speculation that snow leopard would likely be more successful hunting male herds,

especially in broken terrain with abundant rock or vegetative cover.  Presumably, large 

herds feeding in open grassland are least available to snow leopard.

Scant data is available to assess what constitutes optimal interspersion between forage and

escape cover for blue sheep.  However, conclusions from several studies (Schaller 1977,

Wegge 1976 and 1979, Wilson 1981) and systematic observations of prey occurrence and

relative abundance in relation to vegetation and topography (this study) indicate that blue 

sheep movements are characteristically restricted to relatively small areas and that both food

and cover are obtained within a short distance of the forage-cover interface.  (Wegge 

1976:20) noted that "extensive grassy meadows which at first may look like prime sheep

ranges, receive little use as the animals are reluctant to move further than 100-150 yards 

away from rocky outcrops or steep bluffs".  Movements by blue sheep in winter are 

typically restricted to less than 1 km (Schaller 1977, Wegge 1976).  Blue sheep forage in

moderately xeric vegetation communities with relatively low productivity.  During winter,

forage production for a given area decreases while metabolic demands increase.  A key anti-

predator strategy of blue sheep is to stay near cliffs or other precipitous cliffs to which they 

can run if threatened (unpub. data). 

A snow leopard habitat suitability model developed by Jackson and Ahlborn (1984) relied

upon blue sheep habitat indicators.  These investigators considered optimal winter blue 

sheep foraging habitat as those areas consisting of grassland with 30 percent or more 
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canopy cover, shrubland with 30 percent or more canopy cover and 25 percent or greater 

grass and forb composition, areas with a distinct southerly or westerly exposure (average 

aspect from 160o to 200o), generally uniform terrain, and areas with an average slope of 30o 

or less.  These conditions are most closely associated with the smooth terrain type found in 

the study area.  By contrast, optimum winter cover is provided by rocky terrain broken by

gullies, scree chutes, ravines, ridges and scattered promontories, with steep slopes. 

Substantially less snow accumulates on precipitous or steep slopes in excess of 35 degrees. 

The increased structural diversity provided by broken rocky areas also tends to mitigate for 

the effects of extremes in ambient air temperature, thermal and solar radiation and wind 

speed.  Jackson and Ahlborn's model assumed that high and medium forage areas were 

located within 200 m of suitable cover, and that 75 percent or more of the foraging areas

available contained high quality forage.



Tracks of a snow leopard at 5,100 m crossing from Tillisha basin into the main Langu Gorge

©  Rodney Jackson
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CHAPTER 10 DISCUSSION

10.1 Observations on Spacing and Habitat Use in a Dense Snow Leopard Population

I examined activity, movements, home range and habitat utilization patterns of a dense snow

leopard population in western Nepal.  Snow leopards were crepuscular in their activity 

pattern, and although highly mobile, nearly 90% of consecutive daily movements involved a

straight-line distance of 2 km or less (Chapter 5).  Home ranges showed a high degree of 

spatial overlap, both within and between sex.  However, the land-tenure system of the snow

leopard population I studied remains unclear due to a small and biased sample.  Analysis of

locations for four radio-tagged snow leopards showed that 47 to 55% of home range use

occurred within only 6 to 15% of the animal's total home range area (Chapter 6).  

Individuals shared a common core-use area, which was located near a major stream 

confluence (Figure 15).  An examination of the locations of radio-tagged animals indicated a

strong preference for bedding on cliffs, and in steep, broken terrain close to linear landform

features, ridges and travel corridors (Chapter 7).  In terms of habitat, the core area is closer 

to a landform or vegetation edge, moderately and very broken terrain, mixed shrubland, a 

ridge, a travel lane or a major stream confluence, than the typical non-core site.  Snow 

leopards used common range areas at different times; thus the use of core areas was 

staggered temporally, with the different individuals being separated by an average distance 

of at least one kilometer on the same day (Chapter 8).  No seasonal differences in 

movement or home range were detected.  Blue sheep, pika and small rodents are the 

principal prey for the Langu Valley snow leopards, and the core use area may have 

contained more blue sheep kill sites than the non-core area (Chapter 9).  Like other solitary

cats, individual spacing in snow leopard is maintained through scent marking and possibly 

the occasional non-fatal fight.  Ahlborn and Jackson (1988) suggested that the high degree 

of spatial overlap observed is permitted through social marking, mutual avoidance and the 

use of common travel routes or lanes.  Such spatial dynamics may also serve to limit 

density in a particular area.

Home Range, Land-Tenure and Habitat Utilization Patterns:  Under the typical land-tenure

system shown by large solitary felids, males occupy larger, exclusive ranges which 

encompass several female ranges (that in turn may or may not overlap with those of other
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females) (for example, Anderson 1983; Bailey 1993; Rabinowitz and Nottingham 1986). 

Subadult males utilize habitat within or near their parental range for a relatively short time 

only, unless they are successful in occupying the area vacated by the death of a resident 

male.  Most young males disperse to become widely-ranging transients, not all of whom are

successful in establishing their own range.  Females appear to be more tolerant of sharing

habitat and space with one or more of their daughters.  Home ranges are stable unless

influenced by the death of another resident, and resident males have reproductive access to 

all females using the same area (Anderson 1983; Bailey 1993; Packer 1986; Seidensticker et 

al. 1973; Smith 1984; Sunquist and Sunquist 1989).  While solitary felids maintain home

ranges which provide for all of their needs over the course of a year, these may differ 

between the sexes.  Female ranges are usually smaller, but capable of providing sufficient 

food for rearing successive litters, even during lean years. The function of a male's range is 

to provide an area where he can successfully mate with as many females as possible, 

without interference from surrounding males.  By mating with more than one female, a 

male seeks to maximize his number of progeny; females also seek to maximize progeny by

protecting their young, especially from infanticide by intruding males during times of land-

tenure, social and resident animal change.  Theoretically, such predictable land-tenure 

systems promote social stability and maximize the reproductive success of both females and

males (Kitchener 1991; Sunquist and Sunquist 1989). 

Before examining factors that help explain snow leopard home range and habitat utilization

patterns revealed by this study, it is worth briefly reviewing current theory on resource

utilization.  Several theories have been propounded in an effort to explain and understand 

how a predator determines where and when it is profitable to hunt.  Because it is 

unprofitable for a predator to spend excessive time in areas with few prey, it must discover 

the most productive way of allocating its hunting time and identify which prey species are 

the most productive to hunt (Sih 1993).  Optimum foraging is a strategy which efficiently

balances energy expended in search of an optimal diet (efficient prey size in terms of 

handling and net energy return), without placing the predator at undue risk (Stephens and 

Krebs 1986).  Optimal foraging predicts that a predator will hunt and pursue prey where it 

is most "available", that an optimal diet includes those prey items which offer the greatest

return in terms of energy expended, and that foraging efficiency leads to hunting activities

being concentrated in the most profitable parts of an animal's home range, where preferred 

prey items are most abundant.  Greatest foraging efficiency is projected for home ranges 
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which have well defined sites offering a predictable food supply for its owner.  This in 

turn, depends upon resource distribution and habitat quality, as well as habitat patch size 

and heterogeneity (Morrison et al. 1992).  The importance of heterogeneity at the landscape

level is being increasingly recognized, in large part due to the emerging science of 

conservation biology.  As Meffe and Carroll (1994:197) note, "Individuals of the same 

species living in relatively close proximity to one another may experience quite different

physical and biotic environments, even to the extent that some may not be able to survive 

and reproduce while others do very well.  At spatial scales substantially larger than what 

one individual encounters, the landscape experienced by a population represents a mosaic of

good and bad places for the species.  The growth, or lack thereof, of the population is

determined not only by the quality of the individual microsites occupied, but also by the 

spatial and temporal distribution of suitable and unsuitable microsites or patches of habitat."  

Spatial diversity is especially conspicuous in mountain ecosystems.  However, high 

mountain areas like the Himalaya are usually viewed as offering a harsh environment with

severely limited resources, compared to the more productive, adjacent lowland and 

subtropical habitat (Bishop 1990).  Animals inhabiting mountain environments must adapt to 

a vicissitude of formidable climatic and physical elements.  Diurnal and seasonal 

temperature ranges are extreme, while precipitation varies substantially with respect to both

local and regional topography.  Considerable snowfall may accumulate in some areas, 

although large parts of the snow leopard's range either receive little snow or it melts off 

rapidly.  Snow leopards have extremely long, luxuriant fur and a long bushy tail that can be

used to keep it warm while resting, although it probably better serves as a means for

maintaining balance while jumping among the boulders and cliff ledges so prevalent in their

habitat (Heptner and Sludskii 1992; Hemmer 1972; Kitchener 1991).  It is popularly 

believed that the snow leopard's large forepaw serves as an adaptation for walking across 

deep snow, but it is probably more useful for travelling across steep, loose rocky slopes.  

The periodic severe snowstorms which occur every 10-15 years are more influential in

decimating wildlife: many animals may die from hyperthermia and exposure, or hunger due 

to their inability to break through the snow or ice to reach forage (Schaller 1977; Schaller 

and Junrang 1988).  Herbivores must contend with a short growing season, which severely

limits primary production, and predators must adapt to extremely variable prey distribution 

and abundance.
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On the other hand, this sharply defined elevational and topographic gradient creates spatially

diverse and complex habitat conditions with associated opportunities for wildlife, although

resource availability is strongly influenced by land-use and human activity.  Resources are

rarely continuously distributed, rather occurring in small or isolated patches, clumped

irregularly in places or sites with a gentle slope, deeper soil and a more favorable exposure 

to the sun.  Over the centuries, the local human cultures have also adapted to these

environmental conditions with varying success (e.g, Bishop 1990; Brower 1991), but

pastoralism is the dominant land-use found across snow leopard habitat.  In fact, at higher

elevation, except for tourism and mountaineering, the only human use consists of seasonal

(generally summer and fall) grazing of livestock.  As a result, humans usually exert strong

negative pressures, such as direct retribution for depredated livestock, decimation of the 

prey base through hunting and poaching, and the displacement of wild ungulates from 

critical breeding and wintering habitat (Jackson et al. 1994b; Miller and Jackson 1994; Oli 

et al. 1994).   Given this complex environmental milieu, it is important that appropriate 

habitat parameters be measured for one to fully appreciate the snow leopard's habitat 

utilization pattern.

Ford (1983) used optimal foraging theory to model home ranges in a patchy environment.  

He constructed a model which predicted (among other factors) that (1) home range size 

should be inversely related to maximum resource density and resource renewal rate; (2) the

optimal shape should tend to be elongate rather than circular (a length/breadth ratio of 2:1); 

and (3) animals should concentrate their activity in a particular subregion, the degree to 

which depends upon resource density.  He measured the latter tendency as the ratio of the 

area which contained 65% of animal occurrences to the area required to contain 95% of the

occurrences (analogous to the 65% harmonic mean measure isopleth and core use areas

described in Chapter 6).  Home ranges of the four snow leopards modelled appear to 

conform with some of these predictions.  Thus, the home range length-width ratio ranged 

from 1.7:1 to 3.3:1 (Table 6.1, Chapter 6), no doubt due to the elongate nature of habitat

resulting from precipitous slopes, gorge topography, and relatively high baseline elevations. 

Core area use is even more concentrated than that predicted by Ford's model: 47-54% of

overall home range use was located within the 30% harmonic isopleth or inner core area 

(Table 6.5).  
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Resource density and renewal was not adequately measured in this study to assess its

relationship to home range size.  In fact, identifying which habitat and behavioural 

parameters should be measured is a complex undertaking, because one must focus upon 

those aspects of the environment that an animal perceives as being most relevant to fulfilling 

its different needs.  Morrison et al. (1992) emphasized the importance of being well-

grounded in the species' biology, and recommended that selected variables should be (1)

measurable to the desired level of precision; (2) biologically meaningful; and (3) relevant to 

the species involved.  Habitat structure, foraging location, and prey consumption all 

determine the utilized area or habitat of an individual or species.  Habitat selection may be

influenced by evolutionary factors (which confer reproductive fitness and survival values) 

and behavioural factors, which provide the mechanism by which animals select habitat from

that available to them (Morrison et al. 1992; Stephens and Krebs 1986).  The relationship

between density and habitat quality is often misunderstood, for animals may be occupying

"marginal" habitat because optimal areas are already at carrying capacity (Van Horne 

1983).  This augurs for the need to examine second and third order habitat selection 

(Johnson 1980) and to establish baseline conditions in an optimal area like the Langu 

Valley, where livestock are entirely absent and human influence minimal compared to the 

more typical situation prevailing across most of the snow leopard's range.  In assessing the

utilization pattern of snow leopards in a dense population, I have relied upon home range

models which provide output that can be geographically referenced -- thus enabling GIS-

based analyses of habitat utilization and related landscape-level processes.  There is 

evidence to suggest that the harmonic mean measure and its related utilization distribution

oversimplify reality, and fail to measure how coarse-grained an individual perceives its 

habitat is within a local area and given period of time (Gautestad and Mysterud, In Prep). 

There is also a real danger of GIS-derived data assuming greater precision than it merits, 

simply because of the sophisticated algorithms or computing power of the software used 

(see discussion section of Chapter 7).

Snow leopard home range sizes observed in this study conform with predicted home range 

size based on body size (Gittleman and Harvey 1982).   These investigators examined the

relationship between home-range size, metabolic needs and ecology across different 

carnivore species and concluded that home-range size increased with metabolic need, 

regardless of taxonomic affinity. If the effects of metabolic need were removed, other

ecological variables such as activity pattern, habitat, diet and ecological zonation showed a 
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significant influence on home-range size.  Lindstedt et al. (1986) reconsidered the 

relationship between home range and body size and suggested that animals select their home

range areas to meet metabolic needs over biologically critical periods; however, 

relationships between body mass and home range size were confounded by differences in

habitat productivity, methods of home range locations, latitude and social organization. 

Buskirk and McDonald (1989) concluded that between-site differences in home range size in

marten emphasizes the need for identifying ecological factors that may explain such 

variability. In the case of martens (Martes americana), resource abundance appeared to 

exert the greatest influence on home range size (Thompson and Colgan 1987).   Similarly,

Litvaitis et al. (1986) found metabolic home range size in bobcat to be inversely correlated 

with stem cover density and estimated snowshoe hare (Lepus americanus) density.  

Whether prey are evenly distributed (almost never), randomly distributed (even more 

unusual), or clumped (typical pattern), influences a predator's search time and has important

energetic, spatial and social consequences (Sunquist and Sunquist 1989).  Seasonal 

movement of prey clearly contributes to a larger home range size and differential use 

(through the presence of seasonal ranges), such as occurs in puma which have larger 

summer home ranges compared to winter use areas, in which prey is more concentrated

(Seidensticker et al. 1973).  The snow leopard is an opportunistic predator, but with a few 

large prey species like blue sheep, ibex, markhor and Himalayan tahr constituting its dietary

mainstay.  Observations from widely-separated areas indicate it utilizes alternative prey such 

as marmot during the summer or livestock during the winter.  In the Hemis National Park, 

blue sheep tended to move into open areas at higher elevation during summer, a time that 

snow leopards resorted to alternate prey like marmot, Woolly hare and pika.  Chundawat 

and Rawat (1994) felt that the presence of livestock in the Hemis National Park enables a

predator prey ratio of one snow leopard to 45 blue sheep, lower than the 1:100 ratio typical 

for large predators (Schaller 1972).  Blue sheep are extremely sedentary in the Langu 

Valley, and none of the radio-collared snow leopards shifted their use areas to any degree

seasonally.  The lack of seasonal deer migration was attributed by Sweanor (1990) as the 

main reason some puma use the same range year-round.  Incidental observations suggest

seasonal movement in snow leopards occurs where the prey species move distances of 10-20

kilometers or more, such as the Tien Shan (E. Koshkarev, pers. comm.) and parts of 

Pakistan (Roberts 1977).  However, radio-telemetry studies are needed to quantify the 

extent of summer and winter home ranges in such populations.
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Land-tenure systems of medium and large-size felids are unquestionably more flexible than

previously suspected (Sunquist and Sunquist 1989), as shown for common leopard, jaguar 

and puma.  These species are able to share common habitat while avoiding intraspecific 

fights by remaining separated in time, space or both.  For example, Neal et al. (1987) 

observed varying degrees of range overlap within both male and female puma in California,

while Rabinowitz and Nottingham (1986) found overlapping male ranges in a jaguar

population with a high turnover of males.  Maehr et al. (1991) documented extensive home

range overlap among normally exclusive adult female puma in an area where prey was more

abundant.  These and other recent studies reveal wide variability in home range size and

overlap between different individuals and sexes among the solitary Felidae, especially where

numbers of resident adult, subadult and transient animals are high.  Although our 

understanding of causal factors affecting home range size in solitary felids is still 

rudimentary, key underlying factors include differences between areas and habitat with 

respect to prey availability, hunting cover, breeding sites, human disturbance, social or 

other factors.  In discussing land tenure flexibility, Sunquist (1981:52) stated, "...in 

general, correlates can be drawn between the social system and various ecological factors 

such as habitat structure, prey size, distribution and density.  These factors influence the 

social interactions and movement patterns of individuals and hence shape the overall social

organization of the population."  He suggested that the major factor influencing variability 

is the seasonal distribution and abundance of prey, as well as the cost of "defending" home-

range boundaries from intrusions by conspecifics.  Sociality in felids and other carnivores is

associated with habitat openness (Packer 1986), where conditions usually make it more

difficult to protect kills from scavenging by conspecifics or other animals.

Sunquist and Sunquist (1989:285) submit that "sedentary, predictable prey resources are 

often associated with small, exclusive predator ranges or territories."  Rabinowitz and

Nottingham (1986:156) noted that, "if density and distribution of prey are favorable, it is

reasonable that large solitary felids can share limited areas...", provided there is some

mechanism to facilitate mutual avoidance.  The Langu Valley snow leopards spent much of

their time in or near a relatively small central core area, which supported more blue sheep. 

Bobcats also concentrated their activities in more prey-rich habitat, although these may

constitute only a small portion of their total home range (Heller and Fendley 1986). 

Seidensticker et al. (1990) attributed the small (6-13 km2) home ranges of common leopards

living along the edge of the Chitwan National Park in Nepal to an abundant nearby food 
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source in the form of wild and domestic ungulates.  However, scarce resources can modify

land-tenure patterns as well.  For example, male and female leopards in the Wilpatti 

National Park of Sri Lanka overlapped completely, with each pair claiming a 8-10 square 

km area centered about a permanent water-hole and its attendant prey (Muckenhirn and

Eisenberg 1973).

Sandell (1989) suggested that home range size in solitary female carnivores is determined

mainly by food abundance, while male spatial organization is influenced by a combination 

of food outside of the mating season and the presence of receptive females during the 

mating period.  Sandell hypothesized that (1) solitary female carnivore home range size 

should be correlated with food abundance, especially during the most critical time of year; 

(2) exclusive ranges should be expected when food resources are stable and evenly 

distributed, whereas temporal and spatial variation in food availability should tend toward a

system of overlapping ranges; and that (3) exclusive ranges should be relatively smaller than

overlapping ranges.  Unfortunately, the difficulty of measuring and comparing resource

abundance, distribution and availability between different study areas makes testing of such

hypotheses highly problematic.

Sweanor (1990) concluded that puma in the San Andres Mountains are ultimately limited by

food resources, one of the reasons behind the high level of intraspecific aggression that she

observed.  Reduced female overlap in this population was considered to be related to the 

type of environment (a desert) and the low prey density present.  Interestingly, overlap 

between male home ranges was more extensive than overlap between female ranges, thus

contrasting with many other temperate puma populations intensively studied to date.  

However, Sweanor found that adult core use areas were used almost exclusively of other 

puma of the same sex, in sharp contrast to the substantial intrasexual overlap noted among 

the Langu Valley's snow leopards.  Habitat differences led Bailey (1993) to speculate that

female common leopards selected higher quality habitat than males: thus, female ranges 

tended to contain more prey-rich vegetation types than those of males occupying the same 

area.  Female ranges were centered along permanent rivers to which prey is attracted during 

the dry season and which offers suitable cover for hunting, feeding and the raising of cubs. 

Bailey found that the amount of overlap between home ranges of common leopard varied 

with the abundance and distribution of prey and cover, and home range size.  Increased 

overlap was observed in prey-rich areas with an abundance of cover, breeding sites and dry-
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season habitat.  Such a land tenure system allowed young leopards to remain in the same 

area used by their parents as long as food was abundant and they did not compete

reproductively with their parents or other resident leopards.  The pressure to disperse 

intensified when they matured sexually or encountered scarce resources.  Dispersal of 

subadult male leopards from their natal ranges and their influx into surrounding areas 

appears to depend upon leopard population density and the availability of prey (Bailey 

1993).  A similar situation appears to pertain to my study area, which is best described as a

prey rich, heterogenous habitat in which parents and offspring are able to share the same 

space for an extended period of time before young animals must disperse or establish

themselves as residents with full rights to the area.  M3 may be an example of a late 

disperser, while M2 may have established itself as a permanent resident.  

Prey abundance is generally considered the most important factor in the selection of habitat

types in bobcat, followed by such factors as protection from severe weather, the availability 

of resting and denning sites, dense cover for hunting and escape, and freedom from 

disturbance (Bailey 1974; Litvaitis et al. 1986).  Behavioural factors, including hunting,

travelling and social interaction appear to dictate the temporal and spatial use of habitat 

types (this study, McCord 1974).  Bailey (1974) suggested that female bobcats utilize better

quality habitat than males because they require more prey from a smaller area, especially

during the physiologically demanding period of raising offspring.  Mutual tolerance, 

especially among males, reaches its zenith in grizzly bear (Ursus arctos) in Alaska, when 

they are concentrated at seasonal salmon feeding sites (Stirling 1993).  However, this high

degree of tolerance is short-lived, waning with the end of salmon spawning.   Still, 

localized abundant or super-abundant food resources can permit more individuals to occupy

smaller and overlapping home ranges than is the norm for the species.  Davies and Houston

(1984) considered the sharing of a common area to be an economically efficient strategy in

situations of resource abundance.  In areas where essential resources, especially food, are in

short supply, home ranges are expected to be larger, with zones of overlap further apart 

and/or more poorly defined.  

While a key factor, food availability may not be the only factor in home range selection.  

Thus, Anderson et al. (1992) found that female resident puma tended to occupy home 

ranges in low deer-elk density areas, while resident males appeared to select for high deer

density areas. They speculated that females with dependent young may have been attempting 
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to avoid cannibalistic males by occupying areas less frequently utilized by resident males. 

During periods of food scarcity, mutual avoidance may cease to function as a spacing

mechanism in lynx (Tumlinson 1987).  Seidensticker et al. (1973) concluded that food

abundance was not ultimately controlling the puma population he studied, for an apparent

increase in ungulate prey was not followed by a similar response in the puma population.  

He felt that some other requirement within the vegetative-topographic complex determined

population size, possibly social factors.  

The snow leopards' preference for broken terrain with cliffs is well substantiated in the

literature (Fox 1989; Heptner and Sludskii 1992; Jackson and Ahlborn 1984; Mallon 1984,

1987; Schaller et al. 1987, 1988b).  By bedding on a cliff, a snow leopard is more likely to

place itself closer to large prey, since blue sheep tend to utilize the same landform feature

during the nighttime.  During daytime, blue sheep are also more likely to be close to a cliff,

broken terrain or similar landform offering suitable escape cover from predators (Wegge 

1976, 1979; Schaller 1977).  Chundawat (1990a) found snow leopard and blue sheep habitat

use patterns were very similar, except that blue sheep preferred open, smooth terrain for

foraging and tended to avoid very broken areas, a pattern remarkably similar to that existing 

in the Langu Valley.  Cliffs are used by other key snow leopard prey species, including 

ibex (Fox et al. 1988).  In rugged terrain, snow leopards are able to increase their search 

area by seeking ridges, the tops of cliffs and rock outcrops from which to scan the 

surrounding land for potential prey.  This strategy is greatly facilitated by the snow 

leopards' preference for bedding and travelling along cliffs, ridges and other terrain edges. 

Other solitary felids like leopard, puma and bobcat also take advantage of rocky terrain.  

For example, Seidensticker et al. (1973) found that puma preferred timbered, rocky broken

areas.  Puma in Utah preferred habitats that offered good cover for hunting (Logan and 

Irwin 1985).  Rugged terrain and dense vegetation may also limit the number of escape 

routes available to prey, while providing excellent cover and enabling the predator to 

approach its prey more easily.  Hunting success may be enhanced on steep slopes, since 

these have more limited visibilities (especially in the upslope direction), thus facilitating a

closer stalk; fleeing animals may find it difficult to run fast, giving a non-courser like the 

snow leopard the advantage it needs to successfully catch and subdue its victim.  Increased

vulnerability to predators may explain why extremely cover-rich areas, such as those 

afforded by heavily broken terrain and sites with more than 75 percent vegetation canopy

cover, were generally avoided by blue sheep (this study).
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Rocky terrain provides other potential benefits as well.  The adaptive coloration of snow

leopards enables them to blend into the background remarkably well, and numerous authors

have commented on how difficult it is to detect a snow leopard hiding or stalking among 

rocks.  By utilizing snow-free, steeply-sloped areas and sites with southerly exposures, 

snow leopards avoid the need to break new trails in deep snow.  Heptner and Sludskii 

(1992) observed that snow leopards are poorly adapted to moving over deep, loose snow, 

and in these situations utilized "beaten trails", such as occur along the windward side of

mountain crests or cliffs.  Snow leopard attacks upon domestic stock appear to occur more

frequently during severe winters with deep snow, when animals are forced to lower 

elevations near human settlements.  It is possible that wild ungulates are harder to hunt 

under such circumstances.

Sixty-one percent of all stationary locations at which a snow leopard remained for two days 

or more (and may therefore have been on a kill), were located within the overlapping core 

use area (Figure 20).  In terms of landform type, these sites consisted of a cliff followed by

smooth and moderately broken terrain.  Areas more than 125 m from a cliff or further than 

400 m from a travel route were significantly under-represented in the sample of known or

suspected kill sites.  This would suggest that the radio-tagged snow leopards made a 

significant proportion of their kills while moving along a cliff or travel lane.  The suspected 

kill sites tended to be located within 1 km of prime blue sheep habitat on Tillisha Mountain

which supported in excess of 15 - 20 animals/km2 (Figure 21).  Much of the area mapped 

as prime blue sheep habitat consisted of smooth-sloped and rolling alpine grassland or

subalpine shrub, preferred foraging habitat for blue sheep.  At night, blue sheep moved 

onto cliffs or broken terrain along the periphery of these foraging areas; if disturbed by

predators, they sought refuge on the steep slopes bordering the Langu River and Tillisha 

gorge.  Hornocker (1970) concluded that prey are less vulnerable in an area that has been

recently hunted.  If this holds true for blue sheep, I would expect fewer successful kills in 

or close to a frequently visited area, such as the common core area with its high density of

potential travel lanes.  This does not appear not to be the case in the Langu Valley, for 

more kill sites were apparently situated within the well-travelled the core area.

Considerably more ridges and other potential travel routes intersect the common core area 

than the nearby high-density blue sheep area (Figure 16); thus disturbance of prey by non-

hunting cats should be minimized, in contrast to potentially intensified interference when
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blue sheep are on or close to nighttime bedding or escape habitat.  Hunting sites are not

necessarily located in those parts of the predator's home range with the highest prey 

densities (Anderson et al. 1992); rather, good cover enabling a close approach may 

ultimately be more important to success than the presence of large herds of ungulates, 

which are usually harder for a predator to approach undetected.  By placing themselves on 

or near cliffs and along the edge between blue sheep escape and foraging cover, snow 

leopards may be maximizing their chances for successfully locating and killing prey.  This 

is speculative, for behavioral studies quantifying hunting patterns and success have yet to be

undertaken in the snow leopard, a secretive and especially difficult felid to study.

Presumably, reproductive success in female snow leopards is closely linked to the 

availability of secluded denning habitat, in close proximity to areas where prey availability 

and abundance is dependable.  Reproduction is very expensive energetically, given the

relatively long period of lactation and training involved; reproductive advantage likely 

accrues to those females selecting inaccessible den-sites within reach of prey rich sites.  

Thus, they must secure a site where they can hide their cubs from other predators and 

humans for an extended period, especially during the first three months of life, yet obtain

sufficient food without investing excessive energy searching for prey.  Snow leopard F1

selected a maternal den within her core-use area (Figure 12).  Located at 3,960 m in a cave 

near the top of a cliff, it offered ample cover and a good vista of the surrounding terrain.  

The den was within 30 m of a small birch forest where moderately broken terrain was

juxtapositioned with a large smooth slope, vegetated with mixed and subalpine shrub.  The

smooth grass-rich slope was regularly utilized by blue sheep that sought refuge on the 

nearby cliffs at night.  Blue sheep densities in the general area were estimated at about 10

animals per km2 (unpub. data).  In prey-poor areas, females have to spend more time away

from their cubs, thus exposing them to danger for a longer period, especially if habitat in 

the form of strongly broken terrain and cliffs is lacking.  These threats are particularly great

where livestock is grazed during the summer, or where poaching of prey species is 

pervasive.  Most shepherds will catch or kill any snow leopard cub they find, especially if 

there are persistent reports of livestock depredation or ample opportunity for locating a 

female and her cubs.

To what extent can the snow leopard's habitat preferences be used to predict which sites are

most at risk to livestock depredation?  Jackson et al. (1994b) characterized 70 kill sites in 
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the Annapurna Conservation Area of Nepal where livestock were known or suspected of 

having been killed by snow leopard.  These authors concluded that "depredation hotspots" 

were most likely to be located in moderately broken terrain, within 100 m of a cliff, near a

vegetation edge, or close to a heavily broken area (especially if a human settlement is 

located nearby).  Snow leopard were responsible for annual predation rates of 7.1 (yak-

chauri), 0.3 (cattle), 2.4 (sheep and goat) and 6.5 (horse) percent, which amounted to an 

overall depredation rate of 2.8 percent (Jackson et al. 1994b).  This study indicated that

depredation hotspots are not necessarily only associated with areas supporting a low density 

of natural prey species: surveys confirmed the livestock biomass to be as high as 1,700 

kg/km2, or nearly three times that of blue sheep (304 kg/km2, reported by Oli, 1994).  Oli

estimated the snow leopard/blue sheep ratio at between 1:114-159.  Livestock are easily 

killed, for only sheep and goats are guarded to any significant degree.  Oli et al. (1993) 

found that domestic prey constituted 34% of the biomass of the diet of these snow leopards. 

Livestock is an important component of the snow leopard's diet in other parts of its range 

as well.  For example, Chundawat (1992) determined that 39% of the snow leopard's diet, 

on the basis of biomass, consisted of domestic stock during the summer months and 34%

during the winter; Schaller et al. (1987, 1988b) also reported high domestic stock losses 

from snow leopard range in China.  Depletion of native ungulates like ibex and blue sheep

probably results in increased predation upon marmot (summer) and livestock (year-round), 

and may result in increased dispersal of snow leopard from a particular area or population

center with an inadequate food base.  

Social and Marking Behaviour: The functional significance of social marking in mammals 

has received special interest since review papers were published on the topic in the early 

1970's (for example, Johnson 1973; Ralls 1971; Wemmer and Scow 1977).  Social marking

patterns in mammals are reviewed by Brown and MacDonald (1985), Gosling (1982) and

Gorman and Trowbridge (1989).  Based on current knowledge, Bailey (1993) identified four

primary functions for scent-marking in the common leopard: (1) to delineate their home 

ranges; (2) to communicate specific information about their social and reproductive status; 

(3) to prevent or enhance encounters among leopards, especially along common travel 

routes; and (4) to identify places of special interest such as kill sites or encounter sites 

between leopards and other predators.  Smith et al. (1989) concluded that scent-marking 

served as the primary means for shaping and maintaining tiger territories and that tigers 

must learn to use and scent an area frequently in order to establish a strong claim to it.  
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These observations appear to be applicable to the snow leopard population I studied which

exhibited a particularly sophisticated system of social contact for a species that normally 

avoids direct contact (except during breeding), and yet shares remarkably small and 

confined common use areas, without any evidence for territoriality or direct conflict.  

Assuming that snow leopards are capable of using olfactory cues for determining an

individual's gender (Gorman and Trowbridge 1989), scent-spraying rocks and scrapes 

provides the species' with an efficient means for locating mates and spacing themselves 

within shared use areas.  Temporal information contained in such sign may allow 

individuals to avoid using areas currently or recently occupied by other snow leopards.  

Besides reducing the chance for a direct encounter with another snow leopard, this may help

animals to better space themselves with respect to their prey.  For example, it would tend to

limit the amount of time spent in an area where prey species may have been disturbed and 

thus are more wary.  Olfactory communication may serve to supplement visual or auditory

forms of communication such as scraping and yowling.  Odors can be deposited in the

environment as scent marks and thus provide a spatial and historical record of an 

individual's movement and behaviour.  Leyhausen and Wolff (1959) suggested that 

"marking might act like < railway signals’ to minimize encounters between individuals by

signalling how recently an animal has passed".  Snow leopards are well-endowed with

odoriferous glands and possess a complex behavioural repertoire for communicating with

conspecifics.  All home ranges of the Langu snow leopards contained a network of 

interlinked trails and travel corridors, including cliffs, ridges, riverine bluffs and 

streambeds, where individual snow leopards could leave (or not leave) sign like scrapes, 

scent-marks and feces.  While residents may only make slight changes in their movements 

in response to scent marks left by other cats, transients and animals of like sex may react 

more drastically by avoiding an area with fresh sign.  Both resident and transient leopards 

used the same system to travel through the rugged, broken terrain, circumnavigate 

impassable obstacles such as vertical cliffs, or simply to rapidly reach another part of their

home range.  As noted by Gorman and Trowbridge (1989), social odours, whether feces, 

urine or glandular secretions, are a limited resource, and the tendency of snow leopard to 

mark selectively with respect to terrain features and to concentrate sign to relatively few 

places within the home range appears to be both adaptive and efficient.  
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Scent-marking appears to be strongly related to sexual activity and may be due, in large 

part, to increased frequency of female spraying (Rieger 1978).  Ahlborn and Jackson (1988)

concluded that seasonal differences in marking within the core-use area were apparently 

related to increased marking intensity rather than differential visitation by snow leopards. 

Thus, the intensity of marking (amount of marking per visit) among the Langu Valley snow

leopards during pre-oestrus and oestrus periods (December through March) far exceeded 

that found during post-oestrus months.  While Ahlborn and Jackson (1988) were unable to

measure snow leopard marking rates according to sex, female tigers have been reported to 

mark intensively just prior to oestrus (Smith et al. 1989).  Studies of captive felids have

indicated that urine is a potentially rich source of information concerning reproductive state:

estrogen levels increase markedly as the female becomes more receptive, but detection in 

the field would be extremely difficult (David Wildt, pers. comm.).

It is behaviourally and energetically advantageous for solitary animals sharing a common 

space to mark at or near the same places.  Snow leopard scrapes and scent-sprays are

distributed in ways that maximize their chance of being discovered by other individuals for

whom they appear to be intended (Jackson and Ahlborn 1988).  In this regard, Gorman and

Trowbridge (1989:65) commented, "a recurring feature of object marking is that scent 

marks are placed not at random within the environment, but instead at visually conspicuous,

often elevated, and traditionally used landmarks".  This certainly seems to be the case for 

snow leopard, which remark existing sign and leave new sign more intensively than any 

other large solitary felid.  Although overmarking has been demonstrated in the brown hyena

(Mills et al. 1980), it has not been widely reported among the solitary Felidae.  Gorman 

and Mills (1984) suggest that as territory size increases, so it becomes more difficult for an

animal to mark and maintain its respective area, with <hinterland marking’ providing an

alternative, safer strategy.  In many ways, this strategy is comparable to the pattern of core 

area marking noted in my study, although no evidence was found for territoriality in snow

leopard.  Common leopard scrapes are more long-lived during the dry than the wet season, 

and Bailey (1993) suggested that they scrape more often in areas of low precipitation than in

areas with a high rainfall.  The high incidence of scraping in snow leopards compared to 

other species may result from the fact that this species' range largely encompasses areas of

limited snowfall and/or accumulation, as well as sparse rainfall.  
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It is reasonable to assume that snow leopards, like all vertebrates, remember the location of 

a favourable bedding site, a productive hunting area or some secure escape cover within the

limits of their home range.  Even if these resources are heterogeneous and patchy, animals 

can "home in" on such areas if they have appropriate behavioral mechanisms for identifying

and locating specific resources, and if the habitat follows a reasonably predictable pattern. 

Landform edges may serve as one cue for snow leopards, aiding them to move about their

home range in search of food or mates.  By using ridges and other easily recognizable 

terrain features, and by leaving scrapes and other markings, so snow leopards are able to 

live a solitary yet "social" life.  Behaviourally, the snow leopard needs to balance the 

energy expended in locating, pursuing and killing prey, with that expended in avoiding or

accommodating conspecifics using the same area.

The sharing of a common space also minimizes the daily distance an animal has to travel

(Kitchener 1991), thus further conserving its energy -- a potentially important consideration

given the steep and rugged terrain prevailing within much of the snow leopards' range. 

Reduced cost of movement is a potentially important benefit associated with compact home

ranges and well-defined core use areas.  The act of locomotion in such precipitous and 

broken terrain as the Langu valley must involve relatively large energetic cost: it was hardly

surprising that the mean daily distance moved by snow leopard was only slightly over a

kilometer.  The ability of a cat to protect its home range from unwanted intruders is 

contingent upon its capability to visit and regularly sign mark all areas subject to visitation 

by conspecifics.  Only by continually updating its scent marks can an individual "remind

potential intruders who is at home" (Kitchener 1991:163).  A strategy aimed at maintaining

exclusive male ranges or territories in rugged, mountainous terrain may therefore be

energetically prohibitive in permitting regular remarking of widely dispersed sites.  By

advertizing its presence within a smaller core area, located in close proximity to a food-rich

area, snow leopards appear to have the best of two worlds.

Ahlborn and Jackson (1988) emphasized that the disproportionate use of different 

topographic elements for marking should be viewed as a fourth-order selection.  They 

argued that a considerable number of prior selections have already been made by the 

individual as it leaves sign along its travel route, in various habitats, within its home range.  

Site selectivity by snow leopards for marking thus becomes a question of where an 

individual should mark along its travel route to most efficiently and effectively communicate 
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with conspecifics.  Radio-tracking indicated that travel routes were far more extensive than

suggested by sign alone (see Chapter 7, Figure 16).  For example, river beds were used

extensively for travel, but marking was far more likely to occur at or near a confluence than

elsewhere.  Furthermore, sign was almost always deposited in the most "obvious" place.  

Even in smooth terrain generally devoid of prominent features, almost without exception the

only locations marked were rocky outcrops.  Other solitary felids also deposit their sign in

prominent sites.  For example, Seidensticker et al. (1973:47) observed that puma tended to

scrape in areas where " the lay of the land dictated easy passage", such as the mouths of

canyons, in draws, and on ridges.  Reused sites were in situations where topography 

"moulded a convenient runway or pass." 

In light of these considerations, are the Langu Valley snow leopards using a common core 

area because it better satisfies their basic ecological needs like food provisioning, diurnal

bedding, and the raising of young -- or does it serve more of a social function, enabling 

regular interaction between individuals sharing a common space, through the frequent

deposition of sign?  This question is not easily answered, as I used multivariate analysis 

more for exploratory purposes than for confirmatory analysis (Morrison et al. 1992).  Other

factors such as the relatively young age of males and possible filial relatedness among the

cohort studied complicates matters, for carnivores may be more willing to share use areas if

those involved are related and not perceived as being potential competitors.  For several

reasons, I suspect that both prey and social spacing requirements were satisfied within the

overlapping snow leopard core area delineated by the spatial analysis I conducted.  First,

habitat parameters in the core area tend to more closely match those shown to be preferred 

by snow leopard, and second, the core area is located at the intersection of numerous travel

lanes and contained as much as four times the sign found elsewhere within the snow 

leopards' home ranges.  Although snow leopards were able to spend a substantial amount of

time within the core area, social marking better assured that such use was temporally 

separated.  The data also suggest that more snow leopard kills were made in or near the

common core area, which abuts and encompasses a significant portion of the area with the

greatest blue sheep density (Figure 20).  Hunting places and opportunities appear to be 

more favorable here, at least on the basis of snow leopard habitat preferences with regard to

parameters like distance to a cliff, the nearest edge, and a potential travel lane.  This 

situation may offer the best of combinations, for Kruuk (1986) observed that hunting areas 
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and other aspects of prey availability may be at least partly independent of actual numbers 

and biomass of prey.  

In summarizing, the Langu Gorge is characterized by a heterogenous habitat, an abundant 

and reliable food source in the form of blue sheep, the absence of any other large 

competing predator, and a snow leopard population that shares a common core area.  

Tagged snow leopards exhibited a strong preference for broken terrain, mixed shrubland, 

and bedding sites close to edges, linear features and ridgelines or other travel lanes.  Core 

use areas overlapped extensively, but their use was temporally separated.  The shared core 

area partially overlapped a shoulder of Tillisha Mountain, which supported the most 

extensive grassland and obviously productive blue sheep habitat in the study area.  Jackson 

and Ahlborn (1989) speculated that the well-developed social marking system of snow 

leopard permits temporal spacing within a relatively small area, so all animals residing there

can share the area's resources with minimal intraspecific strife.  Mutual avoidance appears 

to be facilitated by scent-marking, scraping, and deposition of other sign, which presumably

identifies the particular snow leopard, its sex, relative age, and reproductive status, and 

thereby possibly conferring some home-area "ownership right" over periods of time (Bailey

1993; Kitchener 1991; Smith et al. 1989).  The incidence of marking within the core area 

was four times greater than non-core sites (Ahlborn and Jackson 1988).  Significantly more

sign-marking was found along linear topographic features, such as major ridge-lines 

forming the juncture of large stream confluences, along the knife-edged sections of ridges 

that separated drainages, and along the base of prominent cliffs.  These terrain features are 

well represented in the core area.  Judging by the intensity of use of core areas, the large

amount of overlap among individuals, and the relatively small total home areas, it is 

remarkable that the tagged cats managed to remain on average more than two kilometers 

apart.  These observations imply that the Langu snow leopards were actively avoiding one

another, while sharing the same area.  Presumably this sophisticated communication system

permits coexistence among an extremely solitary species, enabling individuals to better 

exploit an unequally distributed food resource, especially in areas with a high density of 

snow leopard.

These conclusions may not be applicable to other snow leopard populations.  The primary

constraint of my study lies in the small sample of individuals captured, instrumented and

successfully monitored, as well as its relatively short duration (3.5 years).  As noted above
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the high degree of home range overlap observed could be related to several factors, and is

clearly complicated by the social status and ages of the individuals sampled.  Thus, the 

snow leopards may have shared a common area because some grew up together in the same

vicinity, were related or had not yet dispersed.  The subject of land-tenure in snow leopard 

must therefore remain somewhat obscure, and neither is any information available on 

related topics like dispersal, intraspecific infanticide or the extent to which resident males

achieve matings versus those made by non-residents.  However, my study provides a good

starting point for urgently needed long-term investigations of snow leopard and its high-

altitude ecosystem.  Different patterns of home-range, land-tenure and social marking are 

likely to be found in less favorable habitat where there are fewer snow leopards or where 

man and wildlife coexist precariously.  Conversely, it may prove that a strongly 

overlapping land-tenure system is pervasive in the species, and an adaptation for better

accommodating immigration in highly fragmented and insular mountain ranges, such as 

those found in China's Tien Shan and Mongolia's Gobi regions.  The puma of the 

southwestern United States inhabit similar terrain, and Sweanor (1990) felt that animals

immigrating from other areas may choose to stay in a localized area that is already 

supporting residents rather than risk travelling across large desert basins in search of more

suitable sites.  With critical information lacking on dispersal in snow leopard, I urge future

research efforts to focus upon snow leopard populations in marginal habitat, in order to 

better understand important ecological relationships.  Such knowledge is vital for the 

effective protection of snow leopard and sustained utilization of its fragile mountain habitat

across Central Asia.

10.2 Comparisons with Other Solitary Felids

While snow leopards share many ecological and behavioural characteristics with other large

solitary felids like common leopard, tiger and jaguar, it is closely associated with mountain

habitat like the puma (Table 49).  However, puma generally occupy larger home ranges, 

tend toward range exclusivity in males, and are found across a greater diversity of habitat 

types.  Partial or full range exclusivity is characteristic of all other solitary felids, especially 

in males.  This may also prove to be the case in snow leopard for I do not know how 

typical the population I studied is.  Snow leopard and common leopard ranges overlap in a 

few places, along the Himalaya and mountains of south-east Tibet where low-lying river 

valleys penetrate into the uplands of central Asia.  Usually, common leopards are found in 
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Table 49: Ecological and behavioural characteristics of some large solitary felids

 Feature Snow Leopard Common Leopard Tiger
(Bengal)

Jaguar Puma Eurasian Lynx

Ecological

Primary habitat(s) mountains, alpine
zone

brushlands, forests forest, woodlands &
floodplain

rainforest, swamps forest, shrublands,
desert

forest & shrubland

Principal Prey sheep, goats,
livestock &  rodents

antelope, hyrax &
small prey

large or medium-sized
deer & pig

peccary, capybara,
armadillo, small prey

deer, elk,  peccary, &
small prey

deer, hares & rodents

Home range size (km2) (range):

Male 10 - 21 9 - 388 60 - 105 28 - 152 42 - 826 14 - 210

Female 18 - 36 6 - 487 16 - 39 10 - 168 32 - 685 10 - 26

Land tenure % = O 
& = O 

% = E
& = O

% = E
& = E

% = E 
& = O

% = E 
& = O 

% = O
& = E

Density No/100 km2 0.3 - 12.0 0.6 - 16.4 2.3 - 4.7 1.6 - 6.6 0.4 - 4.4 0.9 - 10.0

Behavioural

Scent-marking urine/scrapes/feces urine/scrapes/feces urine/scrapes/feces scrapes scrapes urine/scrapes

Spacing vocalization yowling ? rasping call roaring pulsed roar none ? none

Fighting common no ? no no no ? sometimes sometimes ?

Differential marking yes (core area) yes  (periphery) yes (periphery) occasional periphery unknown

Sharing of core areas yes occasional occasional occasional ? occasional ? unknown

Seasonality of Mating very restricted
(winter-spring)

year-round (peak
July-Sept)

year-round
(peak Nov- May)

year-round (mid-late
wet season)

year-round, several
peaks

very restricted
(spring)

Sources: Kitchener 1991; Guggisberg 1975; Snow Leopard: this study; Fox 1989; Schaller 1977; Schaller et al. 1994; Common Leopard: Bailey 1993;Schaller 1972; Tiger: 
Sunquist 1981; Schaller 1967; Jaguar: Rabinowitz and Nottingham 1986; Schaller and Crawshaw 1980; Puma: Anderson 1983; Seidensticker et al. 1973; Hornocker 1970;
Lynx:Tumlinson 1987

E = Exclusive range; O = Overlapping range
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more densely vegetated lower valley slopes, with snow leopards inhabiting the more open

alpine and subalpine zones.  Common leopard seems to subsist more upon wild goats and

domestic livestock, while the favorite prey of snow leopards are blue sheep and ibex (Schaller

1977).  As the more aggressive of the two species, the common leopard is likely the more

dominant in areas

where both overlap.  Common leopard utilize different sized prey and center their activities in

different sites where they overlap with a considerably larger species, the tiger (Seidensticker

1976).  Considerably more of the snow leopard's range is sympatric with that of the Eurasian

lynx, Lynx lynx.  Competition is minimized by differences in prey selection, with lynx largely

subsisting upon much smaller prey, especially hares.  As noted in Chapter 9, snow leopard are

able to regularly hunt prey larger relative to their body size than other solitary felid, with the

possible exception of the puma (Packer 1986).  It is worth noting that small prey is important

supplementary food in all felids, except possibly for tiger. 

Snow leopard and lynx are the only two solitary felids in which all females are sexually receptive

 in unison, during a remarkably short time frame.  Compared to other cats, there is very limited

potential for an individual male to monopolize multiple females, and correspondingly, little

incentive for a male to invest substantial energy in maintaining an exclusive range, at least on the

basis of potential reproductive gain.  Unfortunately information on land-tenure among the

Eurasian lynx is very limited, but studies in Alaska indicate that males may either occupy

exclusive ranges or share large areas with other males (Bailey et al. 1986).  Heptner and Sludskii

(1992) report instances of a receptive female being accompanied by as many as five or more male

 lynx. 

Hornocker and Bailey (1986) compared natural population regulation in bobcat, puma and

leopard, noting that the availability of food appeared to control leopard populations, with subadult

and cub mortalities of 32 and 50 percent respectively.  Socially mediated forms of mortality, such

as intraspecific killing and male infanticide have been reported in a number of felids, including

lion, tiger, puma, and leopard, but documentation in snow leopard must await further research

(Bailey 1993; Kitchener 1991; Smith and McDougal 1990; Sweanor 1990).  Dispersal may

provide a significant population regulating mechanism in snow leopard, especially given its

generally fragmented habitat (Greenwood 1980). 
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10.3 Implications for the Conservation and Management of Snow Leopards

The principal threat to snow leopard arises from poaching or hunting for its valuable pelt and

bones, the killing of animals suspected of taking livestock, and depletion (through hunting,

poisoning or habitat loss) of natural prey species, thereby increasing the snow leopard's

dependence upon domestic stock.  Although pelts may fetch from 50 to 500 US dollars or

more, the international fur trade has declined significantly due to regulation, animal rights

activism, and changes in western fashion, the primary market for fur coats (Nowell and Jackson

1995).  However, snow leopards appear to face significant threat from the Chinese medicinal

trade (Jackson et al. 1994a), which places high value on the bones of tiger and the larger felids. 

For example, local tribesmen in northern Nepal are trading snow leopard bones for domestic

sheep along the border with Tibet to persons from as far away as Beijing.  Medicinal products

are marketed in Asia's wealthy cities like Hong Kong, Seoul, Taipei and Singapore, where

demand greatly exceeds supply.  

Although snow leopards have been extirpated from some parts of their former range, baseline

information is lacking, and there are no reliable estimates of the total population.  Fox (1989)

reported that suitable habitat totalled 1,230,000 km2, but this figure should be viewed as

preliminary until the snow leopard's distribution pattern and overall range can be more accurately

defined (Hunter and Jackson, In Press).  Green (1988) estimated the world's population at 1,504

- 2,880, while Fox (1989) put the number at 3,350 - 4,050 individuals.  During recent years,

population estimates for several countries, notably China, Nepal and parts of the former USSR

have been revised upward (Jackson and Ahlborn 1990; Schaller et al. 1988a, 1988b, Koshkarev

1989), suggesting that there may possibly be as many as 5,000 - 7,000 snow leopards

remaining (Fox 1994).  However, lack of information on population density and current

distribution are  significant constraints to establishing the total number present in each of the 12

countries supporting wild snow leopards.  See Nowell and Jackson (1995) for information on

the status and distribution of snow leopards.

From the conservation and biodiversity perspectives, the snow leopard can be viewed as an

indicator or flagship species for motivating the general public and decision-makers to ensure that

Asia's high mountain ecosystems are protected and well-managed in-perpetuity.  Snow leopards

exhibit some of the elements associated with an extinction prone species, including low population

density, comparably large home range, and the need for a relatively pristine or undisturbed

environment (Terborgh 1974).  While the species also shows some features found in "keystone 

species" (Mills et al. 1993), snow leopards are better viewed as a "flagship or charismatic
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megafaunal species" about which to rally public support for the conservation of high-altitude

areas.  By protecting snow leopards, habitat for a wide-range of other alpine plants and animals

is also protected.  The International Snow Leopard Trust, a non-profit organization devoted to

the protection of snow leopard and its habitat, advocates the species as an indicator for environmental

equality, arguing that the environment is more productive and healthy where snow leopards occur

in good numbers (Jackson and Hillard 1986).

Long-term conservation of the snow leopard requires an understanding of such life-history

parameters as home range size and configuration, seasonal shifts in range, core areas, dispersal

rates and patterns, and habitat fragmentation (Villarrubia and Jackson 1994).  This information

can be used, in concert with socio-economic baseline data and well-grounded understanding

and appreciation of local people's aspirations, to design more effective conservation programs

supported by the local residents (Miller and Jackson 1994; Schaller et al. 1987).  Conservation

plans should be prepared with the principles of conservation biology in mind (Meffe and

Carroll 1994).  Fortunately, conservationists are beginning to adopt the landscape perspective

when designing such plans or when analyzing the environmental factors affecting a species of

interest.  Therefore, some of the key elements in the conservation and management of snow

leopard are: (1) field surveys to determine its current status and distribution, using a

standardized survey technique; (2) a country by country assessment of gaps in the protected

areas coverage; (3) identification of key corridor and buffer areas linking adjacent protected

areas or critical snow leopard habitat; and (4) habitat and species-specific management actions

and strategies aimed at minimizing poaching and other human disturbance, reducing people-

wildlife conflicts due to the predation of livestock, ensuring sufficient wild prey, and

maximizing the biodiversity value of key areas, both within and outside of the existing

protected areas network.

With the advent of GIS and increased availability of remotely-sensed data, basic principles of

landscape ecology can be applied to snow leopard conservation on a regional basis.  An early step

in the process involves the use of "gap analysis" to map alpine habitat and biodiversity patterns, as a

basis for ensuring all representative habitats and ecosystems are present within the existing or

proposed protected areas network, buffer areas or other special management zones (Scott et al.

1993).  While gap analysis is usually directed toward assessing multi-species (plant and animal)

distribution patterns, it is equally applicable to assessing gaps in the distribution of a single species

(provided it is based upon good information).  In the case of snow leopard, a problem arises from

the fact that it is not closely associated with a particular, definitive vegetation type that can be

easily mapped.  Rather, the species is found in arid and semi-arid shrubland, and grassland or

barren habitats.  Dense forest is avoided, although snow leopards occupy open coniferous forests
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in the Sayan Mountains of Russia and parts of the Tien Shan Range (Heptner and Sludskii 1992).

According to these criteria, much of Central Asia would qualify as potential snow leopard habitat.

Blue sheep and ibex are closely associated with snow leopard, and their presence can be used to

delineate potential snow leopard habitat. 

Land-surface ruggedness offers another means of mapping and classifying potential snow leopard

habitat, especially if it can be combined with other factors such as human population density, or

the density of settlements and roads.  The close association between snow leopard and the

presence of rocky, broken terrain (including cliffs) has been well documented by this and other

studies.  Findings from this telemetry study were used by Jackson and Ahlborn (1984) to develop

a habitat suitability model (HSI) for snow leopard for application in areas like the Langu

Valley.  They later used a simplified version for assessing habitat suitability throughout the

Nepal Himalaya on the basis of 1:250,000 topographic maps (Jackson and Ahlborn 1990), but

neither models have been subject to field validation.  Potential habitat can be identified and

predicted using terrain or digital elevation models developed specifically from topographic

contour maps or other sources (Hunter and Jackson, In Press).  Since accurate maps are difficult

to procure, aerial radar and improved resolution satellite stereo pair imagery offer an alternative

to reliance upon militarily restricted topographic maps.  Digital imagery has been used with

varying success to identify ibex habitat in Italy (Wiersema and Schroder 1985), but there are

many obstacles to overcome, not least of which is the high cost of developing digital terrain

models (DEMs) (Hunter and Jackson, In Press).  It is essential that HSI models be rigorously

tested and refined if they are to serve as a reliable management tool.  This will require

systematic research in other parts of snow leopard range, under a variety of conditions,

followed by an intensive period of model validation (Verner et al. 1986).  Capen et al. (1986)

listed some of the many potential problems in deriving single-species habitat models from

multivariate analyses, including the difficulty of obtaining an adequate sample size, estimating

habitat parameters within normally acceptable margins of error, and the fact that some

biologically important components of a species' niche are not estimated at all.  

While these techniques may aid in locating potential snow leopard habitat, there is no

alternative to ground-based verification for establishing both the presence/absence and

abundance of snow leopard.  Unfortunately, field surveys are very expensive and time-

consuming, and require trained and motivated personnel.  The need for a standardized approach

to surveying and mapping snow

leopard range was recognized by the International Snow Leopard Trust in 1989, when it

established the SLIMS (Snow Leopard Information Management System) protocol.  This involves

use of standardized sign transect survey techniques for detecting snow leopard presence and
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relative abundance, based upon sign abundance and the status of major prey species, derived by

systematically censusing and extrapolating data from representative sample blocks (Jackson

and Hunter 1995).  A knowledge of marking preferences in snow leopards is vital to proper

transect placement and the interpretation of field observations (Ahlborn and Jackson 1988). 

This study indicated the snow leopard's preference for utilizing ridgelines, riverbeds and other

linear features as travel lanes, and confirmed that core use areas contained an abundance of

these type of features (Chapter 7).  A discriminant function model was developed to help

predict and locate core use zones in other areas inhabited by snow leopard.  This model

suggests that distance to the nearest ridge, travel route or lane, and stream or river confluence

may reliably predict the presence of a core area.  Potential sites could be identified by

examining topographic maps or aerial photographs, thus better prioritizing sites for field

visitation and status validation. 

More research is needed to establish snow leopard and large prey density and resultant

predator/prey ratios in different parts of its range, under varying habitat conditions.  The

calibration of snow leopard densities with prey population estimates (numbers and biomass) for

wild ungulates, livestock and rodents (primarily marmot), based upon systematic surveys, may

help to determine the degree to which food abundance and availability influences population size

in the species.  Snow leopard densities in good habitat range as high as 10-12 residents, transients

and juveniles per 100 km2 (Jackson and Ahlborn 1989), with Chundawat (1992) estimating 8

individuals per 100 km2 in a protected area in India which supports a good number of blue sheep

and livestock.  Oli (1994) judged that there were 4.8-6.7 leopards/100 km2 in the Manang Valley

in Nepal, another area with an abundance of blue sheep and domestic stock.  The livestock

biomass of this area is as high as 1,700 kg/km2 (Jackson et al. 1994b), compared to an estimated

blue sheep biomass of 304 kg/km2 (Oli 1994).  These figures compare favourably with those for

puma, the ecological equivalent of snow leopard in North America.  Thus, the maximum mean

resident densities of puma are 3.3/100 km2 (Hopkins 1989) and 3.0/100 km2 (Neal et al. 1987) in

two areas in California, protected for several years from trophy hunting.  In one area studied by

Neal and others, the adult puma density was estimated as high as 5.1/100 km2.  This contrasts with

densities of 0.3-0.5 resident, transient and juvenile puma per 100 km2 in Utah (Hemker et al. 1984)

and 1.1/100 km2 in Colorado (Anderson et al. 1992), both involving populations which were either

hunted or occupied less productive habitat than that found in California.  Sweanor (1990) reported

densities of 1.7 - 2.3/100 km2, or 0.9-1.1 adult residents per 100 km2 in the San 

Andres Mountains of New Mexico, a relatively isolated desert mountain range.  Seidensticker

et al. (1973) placed the resident puma density at 1.7/100 km2 in Idaho, while Logan et al.

(1986) reported a density of 2.0/100 km2 in Wyoming. 
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A knowledge of prey density and predator:prey ratios would help set limits for validating snow

leopard numbers in a particular area: clearly, there must be sufficient prey to support the

predicted predator population.  Field studies are needed to better establish how many blue

sheep or similar large prey animals are needed to sustain predation by snow leopard at varying densities,

with or without the presence of a buffering species like marmot.  No effort has been made to

determine the extent to which hunting by humans is placing the snow leopard population at

risk; Kenney et al. (1995) used a stochastic spatial model to demonstrate the long-term,

negative impact of unabated poaching on tigers. 

It may be reasonably assumed that snow leopards disperse outward from high density areas or

high quality habitat (a source) into less favorable habitat (a sink).  The importance of sources and

sinks in preserving a species on a regional basis was first noted by Pulliam (1988), and later

incorporated into land conservation planning strategies by others (Noss 1992; Noss and

Cooperrider 1994).  Source areas likely play a critical role in sustaining snow leopard populations,

especially since its habitat is typically comprised of a fragmented, linear mountain range.  The

Langu Valley appears to offer a prime example of an area capable of sustaining a dense snow

leopard population.  Habitat profiles based upon my research could help identify prime habitat

elsewhere in snow leopard range, while sign-based field surveys would locate potential refugial

areas along mountain corridors between widely-separated national parks or reserves.  At the

landscape level, high density sites are likely to be widely and irregularly spaced, separated by

large expanses of habitat where snow leopard density is low and their existence tenuous.  Wide-

ranging status surveys have not been undertaken, so that we have little insight into snow

leopard distribution patterns except to note that such "hotspots" exist.  These are essentially

"islands in a sea of less suitable habitat" where conditions for the cat are optimal and hunting

pressures minimal.  Such areas are generally associated with rugged, broken terrain well

interspersed with patches of smooth, grass or shrub-rich terrain capable of supporting in excess

of 10 blue sheep (or an equivalent large ungulate prey species) per square kilometer -- a large

ungulate biomass of at least 400 kg/km2 (Jackson and Ahlborn 1984).  The presence of ridges

and other "travel lanes" with suitable cover is also desirable.  Usually, prey availability is more

limiting than the presence of suitable terrain, especially in the Himalayan region.  Thus, land-

use and human activity are factors of the greatest importance promoting the fragmentation of

snow leopard habitat.

Jackson and Ahlborn (1990) concluded that non-protected areas harbored the bulk of Nepal's snow

leopard population, and that corridors were critical to encouraging the regular dispersal and

subsequent genetic exchange between otherwise isolated protected area populations.  Such

corridors become all the more critical as snow leopard habitat is further fragmented by new roads,

increased livestock grazing, mining and other human activity (Fox 1994; Jackson and Hunter
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1995).  Indeed, the bulk of the world's snow leopard population is very probably located

outside of existing protected areas, except possibly in Bhutan (Hunter and Jackson, In Press). 

The degree of population and habitat fragmentation is unknown, but given the insular nature of

mountain ranges it is likely to be significant; no doubt, snow leopard population size and

distribution reflects the status of sources and sinks, and the presence or absence of corridor

linkages (Fox 1994; Pulliam 1988; Villarrubia and Jackson 1994).  Virtually nothing is known

about dispersal patterns in snow leopards, and even a rudimentary understanding of this process

is vital to long-term conservation efforts and the avoidance of inbreeding depression.  Dispersal

capability is a critical element in determining how rapidly vacant habitats are occupied or

depleted areas replenished.  Recent work in Mongolia indicates that snow leopards are capable

of crossing flat, cover-poor valleys as wide as 40 km in the sparsely populated Gobi Desert (T.

McCarthy and personal observations).  There is an urgent need to investigate snow leopard

movement rates along linear, narrow mountain ranges with restrictive points and across areas

interrupted with relatively dense human settlements or unfavorable terrain.  As Gadgil

(1971:253) has noted, "Dispersal is one of the most important and among the least understood

factors of population biology".  Such research would establish if dispersal of subadults occurs

soon after independence and if males disperse further than females, as in the case of puma

(Anderson et al. 1992; Hemker et al. 1984; Logan et al. 1986; Sweanor 1990).  Sweanor

speculated that dispersal may be an adaptive mechanism to obtain mates, driving subordinate

males to disperse longer distances in search of areas with fewer dominant males, several mature

females and sufficient food resources. From sign found at one isolated massif, dispersal is not

without risk: a snow leopard carcass was found at an isolated Gobi desert mountain spring

where it may have succumbed to heat and/or lack of prey (Zhirnov and Ilyinsky 1986).

Status surveys need to be followed up with regionally based conservation plans identifying key

snow leopard areas, reserves and corridors permitting inter-refuge movement.  The major

requirements for the maintenance of a healthy snow leopard population include the provision of

a patchwork of areas offering suitable habitat, the presence of corridors to accommodate dispersal,

and security from poaching or unregulated hunting for an adequate population of breeding adults.

Such as conservation strategy, although focussed on a single species, could also protect 

functioning ecosystems because of the extensive ecological and spatial requirements of a large

predator.  This approach has been applied to tigers in India and proposed for jaguar conservation

in Brazil (Quigley and Crawshaw 1992).  Special management problems result from conflict with

herders, which threatens to undermine snow leopard conservation unless addressed by resource

managers and politicians (Jackson et al. 1994b; Miller and Jackson 1994; Oli et al. 1994). 

Quigley and Crawshaw (1992) postulated that unregulated hunting and the decimation of prey
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species affected jaguar predation of livestock, with cattle becoming the most abundant prey in

many areas.  Given the rapid depletion of prey populations through much of Central Asia,

conservation initiatives must seek to ensure an adequate population of wild ungulates,

especially blue sheep and ibex.  Similarly, marmot, pika and small rodents help buffer domestic

livestock from predation by snow leopard, and should not, therefore, be depleted through over-

exploitation or widespread poisoning such as occurs in some parts of China and Mongolia.

Observations by Chundawat and Rawat (1994) that livestock are critical to the maintenance of

snow leopards in some areas, including national parks, raises an interesting question: should local

people be compensated for the ecological service (i.e., provision of a reliable food source) they

are offering to this endangered species, in return for an agreement not to seek retribution for

livestock predated by snow leopard?  Compensation could be made in the form of cash or other

incentives targeted at the entire community rather than one or two herders, so that as many people

as possible benefit from the intervention (Western and Wright 1994).  To date, very little research

has been conducted on such people-wildlife conflict, despite that fact that it is becoming

abundantly clear protected areas cannot survive without the full cooperation and support of

local people (McNeely and Miller 1984; Wells and Brandon 1993).  Conservation initiatives

must also address the rapidly intensifying demand for snow leopard body parts used in

traditional Chinese medicine.  Profit from the sale and trade of snow leopard bones and organs

is an almost irresistible attraction to any mountain dweller, especially those residing amid

rampant poverty.  Snow leopards need to be worth more alive than dead, but how this can be

achieved is unclear; tourism may represent one option, but long-term subsidies for "biodiversity

maintenance" may be necessary on the part of affluent urban residents or nations from outside

the snow leopard's range. In any event, ensuring that local communities serve as effective

stewards for snow leopards and other rare wildlife is critical to curbing the decline in their

numbers, and is an essential pre-requisite to removing this beautiful cat from the endangered

species list.



Training protected areas staff in snow leopard surveying techniques, Shey-Phoksundo National
Park, Nepal, May 1999

©  Rodney Jackson
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APPENDICES

APPENDIX A-1: Vegetation Types (percent frequency) associated with Landforms in the 
Langu Valley, as derived from GIS database tabulation

Vegetation Type (code in parentheses) 

Landform Type
(code in
parentheses)

Barren
(BA)

Mixed
Shrub
(MS)

Subalpine
Shrub
(SA)

Alpine
Grassland
(AG)

Tree
Types
(TREE)

Totals
(N)

Smooth (4) 28.37 11.40 23.26 34.88 2.09 100
(430)

Moderately Broken
(2) 

37.86 32.86 19.29 7.14 2.86 100
(140)

Very Broken (3) 64.06 9.38 19.53 4.69 2.34 100
(128)

Cliff (5) 86.72 4.07 6.50 2.17 0.54 100
(369)

Linear Types (20) 24.14 10.34 0 0 65.52 100
(29)

1096
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APPENDIX A-2: Elevation, slope, aspect and spatial characteristics of major landform types
found in the study area, based on random GIS locations 

Habitat

Parameter

Landform Type

Smooth

LF = 4

Moderately

Broken LF = 2

Heavily Broken

LF = 3

Cliff

LF = 5

Linear Types

(LF = 20)

Elevation

Sample Size

Mean ± S.E.

Minimum

Maximum

411

4289 ± 27.95

2896

4289

131

3877 ± 57.01

2896

5335

128

4280 ± 55.42

3048

5487

365

4165 ±  37.64

2896

5640

29

3089 ± 70.51

2896

3658

Slope

Steepness

Mean ± S.E.

Minimum

Maximum

34 ± 0.58

5

85

38 ± 1.03

5

65

39 ± 1.05

5

55

44 ± 0.69

5

85

25 ± 5.13

5

85

Mean Aspect

± S.E. (°)

166 ± 43.25 170 ± 48.53 136 ± 2.58 151 ± 47.49 24 ± 33.17

Distance to

landform edge

94.6 ± 4.49 39.3 ± 2.98 37.4 ± 2.58 65.0 ± 4.18 41.8 ± 6.03

Distance to

vegetation

edge

81.8 ± 5.32 50.9 ± 4.13 88.8 ± 9.78 98.1 ± 6.43 32.9 ± 4.7

Distance to

travel corridor

853.2 ± 37.06 564.9 ± 46.82 592.0 ± 60.05 592.5 ± 38.7 n/a

Distance to

ridgeline

285.5 ± 9.68 281.4 ± 18.79 190.5 ± 13.47 210.2 ± 10.29 344.7 ± 39.32

Distance to

major

ridgeline

458.5 ± 18.56 455.6 ± 33.97 424.4 ± 35.79 561.0 ± 27.95 613.0 ± 
113.02

Distance to

minor

ridgeline

943.2 ± 22.84 918.2 ± 42.11 659.7 ± 29.49 769.4 ± 22.63  1201.8 ± 

76.64

Distance to

bluff

2956.0 ± 

70.32

1856.0 ± 

105.21 

2509.7 ±

 130.99

2422.1 ± 88.11  560.4 ± 

147.49

Distance to

linear feature

1162.4 ±

 36.50

695.4 ± 47.21 963.7 ± 51.26 1050.4 ± 43.72 22.5 ± 2.67

Distance to

river

900.4 ± 30.65 752.8 ± 44.44 875.8 ± 40.36 816.5 ± 29.91  61.8 ± 13.17

Distance to

stream

confluence

2597.0 ± 

68.34

2449.2 ±

 123.46

 2756.5 ±

 143.96

2842.9 ± 85.08 2038.2 ±

405.13

All distances given in meters
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APPENDIX A-3: Landforms Associated with Vegetation Types (percent frequency), as derived
from GIS database tabulation

Landform Type (code in parentheses)

Vegetation
Association
(code in
parentheses)

Smooth
(LF 4)

Moderately
Broken (LF
2)

Very
Broken
(LF 3)

Cliff
(LF 5)

Linear
Types
(LF 20)

Total (N)

Barren (BA) 20.89 9.08 14.04 54.79 1.20 100.0 (584)

Mixed Shrub
(MS)

39.80 36.80 9.60 12.00 2.40 100.0 (125)

Subalpine
Shrub (SA)

56.82 15.34 14.20 3.45 8.11 100.0 (176)

Alpine
Grassland
(AG)

86.21 5.75 3.45 4.60 0 100.0 (174)

Tree Types
(TREE)

24.32 10.81 8.11 5.41 51.35 100.0 (37)

1,096
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APPENDIX A-4: Elevation, slope, aspect and spatial characteristics of major vegetation
associations found in the study area, based on random GIS locations.

Habitat

Parameter

Vegetation Association

Barren (BA) Mixed Shrub

(MS)

Subalpine Shrub

(SA)

Alpine

Grassland (AG)

Tree Types

 (TREE)

Elevation (m)

Sample Size

Mean ± S.E.

Minimum

Maximum

584

4283.3 ± 29.99

2896

5640

125

3378.8 ± 31.47

2896

4573

176

4230.8 ± 32.75

3353

5335

174

4450.6 ± 21.4

3658

4450

37

3452.2 ± 78.66

2896

3451

Slope (°)

Mean ± S.E.

Minimum

Maximum

39.8 ± 0.58

5

85

40.0 ± 1.12

5

65

39.5 ± 0.76

5

65

31.9 ± 0.96

5

85

33.6 ± 4.18

5

85

Mean Aspect

± S.E.(°)

151.1 ± 46.03 172.8 ± 48.96 173.2 ± 48.65 142.4 ± 41.11 26.1 ± 45.00

Distance to

landform edge

59.0 ± 2.77 51.2 ± 4.55 54.2 ± 3.84 138.9 ± 9.17 42.8 ± 5.67

Distance to

vegetation

edge

106.8 ± 5.61 45.2 ±3.96 45.2 ± 3.35 77.4 ± 5.38 37.9 ± 4.94

Distance to

travel corridor

690.9 ± 34.33 539.4 ± 49.41 625.8 ± 45.10 871.8 ± 46.53 204.5 ± 58.45

Distance to

ridgeline

221.2 ± 8.10 320.3 ± 19.81 220.7 ± 12.79 312.1 ± 15.55 318.4 ± 37.57

Distance to

major

ridgeline

479.5 ± 20.01 553.1 ± 43.45 497.3 ± 27.40 476.5 ± 31.57 553.6 ± 84.10

Distance to

minor

ridgeline

822.5 ± 19.11 974.2 ± 45.94 708.8 ± 31.79 971.1 ± 29.84 1121.5 ± 77.6

Distance to

bluff

2731.3 ± 69.67 1121.9 ± 79.18 2367.6 ± 84.28 3296.1 ±

 95.72

990.6 ± 140.96

Distance to

linear feature

1142.1 ± 34.46 343.2 ± 25.48 1056.2 ± 40.07 1196.2 ±

 51.18

130.5 ± 26.44

Distance to

river

848.3 ± 23.63 431.9 ± 23.75 1084.6 ±41.45 923.7 ± 50.97 182.4 ± 36.28

Distance to

stream

confluence

2908.6 ± 67.81 2381.4 ± 

164.62

2559.4 ± 7784 2320.2 ± 

96.92

1894.6 ± 

273.17

 All distances given in meters with standard error
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APPENDIX A-5: Size and Perimeter of Vegetation and Landform Polygons in the Langu Valley (derived from GIS

analysis).

Landform Types Item Area (ha) Perimeter (km) Patton's "edge"

Diversity Index

Moderately Broken

(n = 140) Mean ± Std. Error

Minimum

Maximum

32.78 ± 2.23

2.18

90.73

4.99 ± 0.35

0.65

16.37

3.72 ± 0.08

1.13

4.85

Heavily Broken

(n = 128)

Mean ± Std. Error

Minimum

Maximum

32.28 ± 2.48

2.15

90.02

5.06 ± 0.32

0.6

12.19

2.46 ± 0.08

1.15

3.91

Cliff

(n = 369)

Mean ± Std. Error

Minimum

Maximum

187.21 ± 6.96

0.93

398.99

24.75 ± 0.91

0.62

49.76

4.82 ± 0.11

1.18

7.03

Smooth

(n = 430)

Mean ± Std. Error

Minimum

Maximum

281.86 ± 13.207

0.92

703.41

17.96 ± 4.49

0.17

586.07

2.90 ± 0.07

1.08

5.65

Linear

(n = 29)

Mean ± Std. Error

Minimum

Maximum

109.53 ± 13.5

0.66

157.46

35.58 ± 4.39

0.37

51.15

8.42 ± 0.87

1.29

11.49

Vegetation Cover Types:

Barren

(n = 584)

Mean ± Std. Error

Minimum

Maximum

1791.61 ± 13.17

2.36

1858.69

170.51 ± 1.28

0.62

183.34

11.24 ± 0.07

1.12

11.99

Mixed Shrub

(n = 125)

Mean ± Std. Error

Minimum

Maximum

45.61 ± 2.83

1.87

102.27

5.69 ± 0.29

0.613

11.29

2.38 ± 0.06

1.12

3.49

Subalpine Shrub
(n = 176)

Mean ± Std. Error
Minimum

Maximum

45.59 ± 3.52

1.31

142.57

4.85 ± 0.29

0.49

11.23

2.05 ± 0.05

1.06

3.40

Alpine Grassland

(n = 174)

Mean ± Std. Error

Minimum

Maximum

129.10 ± 9.13

1.95

297.95

10.13 ± 0.69

0.61

23.69

2.37 ± 0.08

1.10

3.87

Tree Type

(n = 37)

Mean ± Std. Error

Minimum
Maximum

91.04 ± 11.10
1.15

145.93

30.48 ± 3.96

0.411

50.09

7.56 ± 0.84

1.08

11.69
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APPENDIX A-6: Descriptive statistics for selected landform habitat parameters for male and female snow leopards,

and random locations

Parameter /
Variable
Code

Sample
Group

Sample
Size

Mean ± Standard
Error

Minimum Maximum

Elevation (m)
(ELEV)

%% 265  3479 ± 26.09 2896 4878

&& 328  3551 ± 24.27 2896 4878

Random 1049  4176 ± 20.49 2896 5640

Slope
(degrees)
(SLOP)

%% 265  42.1 ± 0.76 5 75

&& 328  44.1 ± 0.63 5 75

Random 1096  38.3 ± 0.42 5 85

Aspect
(degrees)
(ASP)

%% 265 156.8 ± 57.49 n/a n/a

&& 328 158.2 ± 58.17 n/a n/a

Random 1096 165.3 ± 54.82 n/a n/a

Distance
to nearest
landform
edge
(LFDNE)

%% 265  38.3 ± 2.61 0.2 360.7

&& 327  41.0 ± 2.52 0.3 431.9

Random 1096  69.5 ± 2.41 0.2 733.7

Distance
nearest
Smooth
(SMODIS)

%% 265  87.3 ± 6.3 0 417.7

&& 327  100.5 ± 5.38 0 467.4

Random 1096  83.7 ± 3.56 0 801.0

Dist nearest
mod. broken
(BROKDIS)

%% 265  153.9 ± 8.92 0 623.2

&& 327  162.0 ± 8.84 0 696.79

Random 1096  231.0 ± 7.75 0 1629.5

Dist nearest
very broken
(VBROKDIS
)

%% 265  183.2 ± 9.91 0 848.8

&& 327  164.7 ± 9.31 0 860.0

Random 1096  303.4 ± 10.42 0 1969.2

Dist nearest
cliff
(CLIFDIS)

%% 265  58.2 ± 5.12 0 409.5

&& 327  41.9 ± 3.97 0 431.9

Random 1096  91.9 ± 3.81 0 658.1

DNOT
Smooth a

(DNOT4)

%% 196  118.1 ± 7.35 1.2 417.7

&& 263  125.0 ± 5.75 1.2 467.4

Random 666  137.7 ± 4.82 0.3 801.0

DNOT Cliff a

(DNOT5)
%% 155  99.6 ± 7.08 0.2 409.5

&& 171  80.3 ± 6.30 0.3 431.9

Random 726  138.8 ± 4.91 0.2 658.1
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DNOT
Moderately
Broken a

(DNOT2)

%% 228  178.8 ± 9.37 1.2 623.9

&& 275  192.7 ± 9.43 1.3 696.8

Random 956  264.8 ± 8.34 0.2 1629.5

DNOT Very
Broken a

(DNOT3)

%% 233  208.3 ± 10.23 1.5 846.8

&& 286  188.3 ± 9.88 1.1 860.1

Random 968  343.6 ± 11.18 1.2 1969.2

DNOT Linear
Type  a

(DNOTLIN)

%% 313  434.3 ± 22.83 1.9 1861.3

&& 248  383.1 ± 19.38 0.4 1411.8

Random 1067  1038.5 ± 23.26 1.1 3561.4

Notes:
  a  DNOT is the distance to the specified landform type when a snow leopard location or
random point are not located within the same type.

All distances are in meters
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APPENDIX A-7: Descriptive statistics for selected vegetation spatial habitat parameters

Parameter / Code Sample Group Sample
Size

Mean ± Standard
Error

Minimum Maximum

Dist nearest 
vegetation edge
(VDNE)

%% 265  45.4 ± 2.58 0.4 259.9

&& 327  47.9 ± 2.68 0.8 299.9

Random 1096  82.9 ± 3.29 0 1128.8

Dist nearest barren 
site (BADIS)

%% 265  46.3 ± 4.4 0 375.3

&& 327  33.5 ± 3.61 0 391.4

Random 1096  35.9 ± 2.09 0 542.0

Dist nearest mixed
shrub site (MSDIS)

%% 265  131.8 ± 15.68 0 2631.0

&& 327  204.4 ± 20.59 0 2671.7

Random 1096  811.3 ± 25.79 0 3766.4

Dist nearest
 subalpine shrub site
(SADIS)

%% 265  320.6 ± 17.95 0 1087.2

&& 327  275.2 ± 14.48 0 1082.0

Random 1096  265.5 ± 8.60 0 1390.6

Dist nearest alpine
grassland site 
(AGDIS)

%% 265  865.8 ± 30.18 0 1977.2

&& 327  914.2 ± 27.93 0 2099.3

Random 1096  442.4 ± 13.68 0 2248.2

Dist nearest tree type
(TREEDIS)

%% 265  292.9 ± 18.05 0 2508.2

&& 327  484.2 ± 26.77 0 2822.2

Random 1096  1075.4 ± 27.11 0 3895.5

DNOT Barren a

(DNOTBA)
%% 156  78.6 ± 6.36 1.2 375.3

&& 167  65.6 ± 6.12 1.0 391.4

Random 512  76.9 ± 3.73 0.1 542.0

DNOT Mixed Shrub a

(DNOTMS)
%% 181  192.9 ± 21.51 0.7 2631.0

&& 241  277.3 ± 26.41 1.6 2671.7

Random 971  915.8 ± 27.37 0.4 3766.3

DNOT Subalpine
Shrub a (DNOTSA)

%% 221  384.5 ± 18.76 2.4 1087.2

&& 274  328.5 ± 15.32 0.8 1082.0

Random 920  316.2 ± 9.36 0.4 1390.6

DNOT Alpine
Grassland a

(DNOTAG)

%% 254  903.3 ± 29.28 9.9 1997.2

&& 317  943.0 ± 27.28 3.2 2099.3

Random 922  525.9 ± 14.73 0.1 2248.1

DNOT Tree a

(DNOTREE)
%% 248  312.9 ± 18.61 0.4 2508.25

&& 309  512.4 ± 27.49 2.9 2822.16

Random 1059  1112.9 ± 27.23 0.4 3895.5

Note:
  a  DNOT is the distance to the specified vegetation type when the snow leopard or random point are not 
located within the same type

All distances are in meters
APPENDIX A-8: Comparison of Landform and Vegetation Features for Core and Non-Core Areas based on 1,096
GIS derived random locations
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Habitat Parameter a Core Area 
(n = 72)
(Cincore)

Non-Core Area
 (n = 1024)

Test Statistic b

Mean Std.
Error

Mean Std.
Error

t-value U and O2

Landform:

Dist to landform edge c 45.8 5.06 71.2 2.55 2.47 *

Dist to moderately
broken terrain (LF 2)  c

150.1 16.83 236.7 8.18 1.50 *

Dist to very broken
terrain (LF 3)  c

191.2 21.36 311.3 11.01 2.04 *

Dist to smooth terrain
(LF 4)

104.1 14.06 82.3 3.68 -1.52 ns

Dist to cliff (LF 5)  c 80.5 12.01 92.7 3.99 0.05 ns

Dist to linear feature 262.5 25.33 1063.7 23.92 U = 586771.0 O2 =
93.52 ***

Dist to DNOT2  c 174.3 17.71 271.1 8.79 2.36 *

Dist to DNOT3  c 229.5 22.59 351.1 11.79 1.68 ns

Dist DNOT4 a 169.8 16.63 145.2 5.16 -1.27 ns

Dist DNOT5 a c 123.1 15.09 148.9 5.30 -1.27 ns

Dist to DNOTLIN  c 286.4 25.67 1088.1 23.92 9.45 ***

Vegetation:

Dist nearest vegetation
edge  c

55.1 6.57 84.8 3.49 2.11 *

Dist Barren type 
(BA) c

61.0 11.80 34.2 2.07 2.73 **

Dist Mixed Shrub (MS) c 94.3 14.44 861.7 26.89 9.73 ***

Dist Subalpine Shrub
(SA)

337.4 36.76 260.4 8.82 -2.22 *

Dist Alpine Grassland
(AG)

859.7 47.16 413.1 13.81 -8.33 ***

Dist Tree type (TREE)  c 204.0 16.99 1136.6 28.01 8.75 ***

DNOTBA 95.5 16.46 75.2 3.76 U = 10691.0 O2 = 0.01 
ns

DNOTMS   c 144.4 18.33 955.0 28.14 8.45 ***

DNOTSA 426.2 38.58 308.9 9.61 -3.034 **

DNOTAG 859.7 47.16 497.6 15.08 -6.75 ***

DNOTREE 222.6 16.75 1172.1 28.15 U = 57217.0 O2 = 103.24***

a Dist = distance to nearest specified landform or vegetation type.  All distances are 
measured in meters; LF = landform type; DNOT4 = distance nearest landform # 4 when 
not located in this type (n = 201 core, 422 non-core); DNOT5 = distance nearest 
landform # 5 when not located in LF 5 (n = 214 core, 471 non-core)

b Two-sample t-test value, unequal sample size (pooled variances, df = 1094)
Mann-Whitney U statistic and O2 approximation
* = P # 0.05, ** = P # 0.01, *** = P # 0.000, ns = not significant

c Variable transformed to meet homogeneity of variance requirement
APPENDIX A-8 (CONTINUED): Comparison of Selected Spatial Landscape Features 
between Snow Leopard Core and Non-Core Home Range Areas based on GIS derived 1,096 random locations 
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Habitat
Parameter a

Core Area
Random Locations
(n = 72)

Non-Core Area
Random Locations
(n = 1024)

Test Statistic b

Mean Std.
Error

Mean Std.
Error

t-value U and O2

Elevation (m) 3147.7 38.34 4230.1 20.73 U = 57107.0
O2 = 92.17 ***

Slope (degrees) 40.4 1.67 38.2 0.43 1.30 ns

Aspect (degrees) 156.1 45.00 166.7 45.00 1.12 ns

Dist to ridge
(RIDIS) c

140.3 12.64 257.8 6.41 4.28 ***

Dist to major
ridge
(RMAJDIS) c

365.1 33.69 501.7 14.55 1.31 ns

Dist to minor
ridge
(RMINDIS) c

534.8 30.34 877.8 14.54 5.83 ***

Dist to linear
landform feature
(LINDIS)   c

263.9 25.12 1064.2 23.89 9.78 ***

Dist to travel
corridor (TDIS)
c

387.9 25.77 1076.2 19.77 12.59 ***

Dist to bluff
(BLUFDIS)

1088.5 48.68 2620.9 49.50 U = 59031.0
O2 = 72.90 ***

Distance nearest
river or stream
(RIVDIS) c

459.9 34.23 854.1 18.63 4.16 ***

Dist to
confluence
(CONDIS)

1307.2 56.28 2760.2 48.71 U = 61253.0
O2 = 88.25 ***

a Dist = distance to nearest specified feature.  All distances in meters

b Two-sample t-test value, unequal sample size; Mann-Whitney U statistic and O2

approximation

* = P # 0.05, ** = P # 0.01, *** = P # 0.000, ns = not significant

c Variable transformed to meet homogeneity of variance requirement
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APPENDIX A-9: Core and Non-Core Area Landscape Ecology Indices

Landscape
Index  a

Core (n = 72) Non-Core (n = 1024) Test statistic i

Landform Vegetation Landform Vegetation
Landform Vegetation

Relative
Richness Index
b

0.57 0.58 0.49 0.50 -3.93 *** -4.61 ***

Diversity Index
c

0.58 0.54 0.52 0.48 -2.42 * -3.07 **

Dominance
Index d

0.47 0.42 0.40 0.37 -2.24 * -1.61 ns

Fragmentation
Index e

0.49 0.47 0.41 0.38 -3.61 *** -4.37 ***

NDC Index f 0.50 0.58 0.43 0.49 -4.04 *** -4.62 ***

CVN Index  g 0.59 0.50 0.55 0.49 -1.35 ns -0.57 ns

BCM Index    h 0.68 0.64 0.65 0.59 -1.45 ns -2.08 *

a All indices are standardized according to the scale 0 (low) to 1.0 (high). 

b Relative Richness (R = number types / maximum number types present *100)

c Diversity (h = -sum(p*pIn(p)) [where p = proportion of the footprint in each class, In = natural
log]

d Dominance (D = Hmax-H) [where H = diversity; and Hmax = maximum diversity - In (n)
where n = no different classes, In = natural log]

e Fragmentation  (F = (n-1)/(c-1) [where n = no different classes present and c =no cells
considered, always 9)]

e NDC or number of different classes in each 3x3 neighborhood (1-9)

e CVN or number of cells different from center in each 3x3 neighborhood (0-9)

e BCM or number of different pairs in each 3x3 neighborhood

i Two-sample t-test value, unequal sample size (pooled variances, df = 1094)
* = P # 0.05, ** = P # 0.01, *** = P # 0.000, ns = not significant


